首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   32篇
  国内免费   1篇
  2024年   3篇
  2023年   6篇
  2022年   15篇
  2021年   22篇
  2020年   14篇
  2019年   13篇
  2018年   17篇
  2017年   15篇
  2016年   18篇
  2015年   28篇
  2014年   21篇
  2013年   26篇
  2012年   29篇
  2011年   38篇
  2010年   24篇
  2009年   14篇
  2008年   18篇
  2007年   22篇
  2006年   16篇
  2005年   19篇
  2004年   11篇
  2003年   12篇
  2002年   8篇
  2001年   5篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1995年   5篇
  1994年   2篇
  1991年   5篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1979年   5篇
  1978年   2篇
  1977年   7篇
  1975年   8篇
  1974年   6篇
  1973年   4篇
  1972年   6篇
  1971年   5篇
  1970年   6篇
  1969年   6篇
  1954年   1篇
排序方式: 共有553条查询结果,搜索用时 375 毫秒
481.
Retinopathy of prematurity (ROP) is a retinal vascular disease which occurs in infants with a short gestational age and low birth weight and may lead to retinal detachment and blindness. In some premature infants, ROP progresses to advanced stages despite rigorous intervention, but in the majority, it spontaneously regresses before the threshold stage. Genetic factors, e.g. mutations in the Norrie disease (ND) gene, have been implicated in determining the progression of ROP to advanced stages. We have identified a novel C597A polymorphism of the ND gene; we screened this and another mutation in the ND gene, C110G, in 210 premature Kuwaiti infants using PCR-RFLP, DNA sequence analysis and DNA enzyme immunoassay hybridization to investigate their association with advanced-stage ROP. In this cohort of premature Kuwaiti newborns, 115 of 210 babies had no eye problems and served as controls, while 95 were found to have ROP. In 71 of the 95 ROP cases, the disease spontaneously regressed at or before stage 3, while in 24 of 95 ROP cases, the disease progressed to advanced stages 4 or 5. The incidence of the AA genotype of the C597A polymorphism was considerably higher in advanced-stage ROP cases (83.3%) compared to spontaneously regressing ROP cases (0%) and the normal controls (10.4%) (p < 0.0001). For the other genotypes, no significant difference was detected between the controls and ROP cases. In the case of the C110G mutation in the ND gene, no significant differences were detected between the controls and ROP cases, and the majority of subjects had a CC genotype in all three groups.  相似文献   
482.
Inward rectifier (Kir) potassium channels are characterized by two transmembrane helices per subunit, plus an intracellular C-terminal domain that controls channel gating in response to changes in concentration of various ligands. Based on the crystal structure of the tetrameric C-terminal domain of Kir3.1, it is possible to build a homology model of the ATP-binding C-terminal domain of Kir6.2. Molecular dynamics simulations have been used to probe the dynamics of Kir C-terminal domains and to explore the relationship between their dynamics and possible mechanisms of channel gating. Multiple simulations, each of 10 ns duration, have been performed for Kir3.1 (crystal structure) and Kir6.2 (homology model), in both their monomeric and tetrameric forms. The Kir6.2 simulations were performed with and without bound ATP. The results of the simulations reveal comparable conformational stability for the crystal structure and the homology model. There is some decrease in conformational flexibility when comparing the monomers with the tetramers, corresponding mainly to the subunit interfaces in the tetramer. The beta-phosphate of ATP interacts with the side chain of K185 in the Kir6.2 model and simulations. The flexibility of the Kir6.2 tetramer is not changed greatly by the presence of bound ATP, other than in two loop regions. Principal components analysis of the simulated dynamics suggests loss of symmetry in both the Kir3.1 and Kir6.2 tetramers, consistent with "dimer-of-dimers" motion of subunits in C-terminal domains of the corresponding Kir channels. This is suggestive of a gating model in which a transition between exact tetrameric symmetry and dimer-of-dimers symmetry is associated with a change in transmembrane helix packing coupled to gating of the channel. Dimer-of-dimers motion of the C-terminal domain tetramer is also supported by coarse-grained (anisotropic network model) calculations. It is of interest that loss of exact rotational symmetry has also been suggested to play a role in gating in the bacterial Kir homolog, KirBac1.1, and in the nicotinic acetylcholine receptor channel.  相似文献   
483.
Feldman HJ  Dumontier M  Ling S  Haider N  Hogue CW 《FEBS letters》2005,579(21):4685-4691
A novel chemical ontology based on chemical functional groups automatically, objectively assigned by a computer program, was developed to categorize small molecules. It has been applied to PubChem and the small molecule interaction database to demonstrate its utility as a basic pharmacophore search system. Molecules can be compared using a semantic similarity score based on functional group assignments rather than 3D shape, which succeeds in identifying small molecules known to bind a common binding site. This ontology will serve as a powerful tool for searching chemical databases and identifying key functional groups responsible for biological activities.  相似文献   
484.
Bioinformatic and enzymatic characterization of the MAPEG superfamily   总被引:1,自引:0,他引:1  
The membrane associated proteins in eicosanoid and glutathione metabolism (MAPEG) superfamily includes structurally related membrane proteins with diverse functions of widespread origin. A total of 136 proteins belonging to the MAPEG superfamily were found in database and genome screenings. The members were found in prokaryotes and eukaryotes, but not in any archaeal organism. Multiple sequence alignments and calculations of evolutionary trees revealed a clear subdivision of the eukaryotic MAPEG members, corresponding to the six families of microsomal glutathione transferases (MGST) 1, 2 and 3, leukotriene C4 synthase (LTC4), 5-lipoxygenase activating protein (FLAP), and prostaglandin E synthase. Prokaryotes contain at least two distinct potential ancestral subfamilies, of which one is unique, whereas the other most closely resembles enzymes that belong to the MGST2/FLAP/LTC4 synthase families. The insect members are most similar to MGST1/prostaglandin E synthase. With the new data available, we observe that fish enzymes are present in all six families, showing an early origin for MAPEG family differentiation. Thus, the evolutionary origins and relationships of the MAPEG superfamily can be defined, including distinct sequence patterns characteristic for each of the subfamilies. We have further investigated and functionally characterized representative gene products from Escherichia coli, Synechocystis sp., Arabidopsis thaliana and Drosophila melanogaster, and the fish liver enzyme, purified from pike (Esox lucius). Protein overexpression and enzyme activity analysis demonstrated that all proteins catalyzed the conjugation of 1-chloro-2,4-dinitrobenzene with reduced glutathione. The E. coli protein displayed glutathione transferase activity of 0.11 micromol.min(-1).mg(-1) in the membrane fraction from bacteria overexpressing the protein. Partial purification of the Synechocystis sp. protein yielded an enzyme of the expected molecular mass and an N-terminal amino acid sequence that was at least 50% pure, with a specific activity towards 1-chloro-2,4-dinitrobenzene of 11 micromol.min(-1).mg(-1). Yeast microsomes expressing the Arabidopsis enzyme showed an activity of 0.02 micromol.min(-1).mg(-1), whereas the Drosophila enzyme expressed in E. coli was highly active at 3.6 micromol.min(-1).mg(-1). The purified pike enzyme is the most active MGST described so far with a specific activity of 285 micromol.min(-1).mg(-1). Drosophila and pike enzymes also displayed glutathione peroxidase activity towards cumene hydroperoxide (0.4 and 2.2 micromol.min(-1).mg(-1), respectively). Glutathione transferase activity can thus be regarded as a common denominator for a majority of MAPEG members throughout the kingdoms of life whereas glutathione peroxidase activity occurs in representatives from the MGST1, 2 and 3 and PGES subfamilies.  相似文献   
485.
Positive and negative regulation of cytokines such as IFN-gamma are key to normal homeostatic function. Negative regulation of IFN-gamma in cells occurs via proteins called suppressors of cytokine signaling (SOCS)1 and -3. SOCS-1 inhibits IFN-gamma function by binding to the autophosphorylation site of the tyrosine kinase Janus kinase (JAK)2. We have developed a short 12-mer peptide, WLVFFVIFYFFR, that binds to the autophosphorylation site of JAK2, resulting in inhibition of its autophosphorylation as well as its phosphorylation of IFN-gamma receptor subunit IFNGR-1. The JAK2 tyrosine kinase inhibitor peptide (Tkip) did not bind to or inhibit tyrosine autophosphorylation of vascular endothelial growth factor receptor or phosphorylation of a substrate peptide by the protooncogene tyrosine kinase c-src. Tkip also inhibited epidermal growth factor receptor autophosphorylation, consistent with the fact that epidermal growth factor receptor is regulated by SOCS-1 and SOCS-3, similar to JAK2. Although Tkip binds to unphosphorylated JAK2 autophosphorylation site peptide, it binds significantly better to tyrosine-1007 phosphorylated JAK2 autophosphorylation site peptide. SOCS-1 only recognizes the JAK2 site in its phosphorylated state. Thus, Tkip recognizes the JAK2 autophosphorylation site similar to SOCS-1, but not precisely the same way. Consistent with inhibition of JAK2, Tkip inhibited the ability of IFN-gamma to induce an antiviral state as well as up-regulate MHC class I molecules on cells at a concentration of approximately 10 microM. This is similar to the K(d) of SOCS-3 for the erythropoietin receptor. These data represent a proof-of-concept demonstration of a peptide mimetic of SOCS-1 that regulates JAK2 tyrosine kinase function.  相似文献   
486.
We previously reported the occurrence of multiple forms of drug metabolizing enzymes in camel tissues. In this study, we demonstrated for the first time, flavin-containing monooxygenase (FMO)-dependent metabolism of two model substrates methimazole (MEM) and N,N'-dimethylaniline (DMA) by camel liver, kidney, brain and intestine. FMO-catalyzed metabolism in the microsomes of camel tissues was independent of cytochrome P450 (CYP) activity and exhibited a pH and temperature dependence characteristic of FMO enzymes. Use of inhibitors of CYP activities, SKF525A, octylamine or antibody against NADPH-P450 reductase, did not significantly alter the FMO-dependent substrate metabolism. Using MEM as a model substrate for FMO activity, we show that camel liver has an activity similar to that in rat and human livers. MEM metabolism in extrahepatic tissues in camels was significantly lower (60%-80%) than that in liver. Our results suggest occurrence of FMO in camel tissues, with catalytic properties similar to those in rat and human livers. These results may help in better understanding the effects of pharmacologically and toxicologically active compounds administered to camels.  相似文献   
487.
The synthesis and evaluation of a group of 2,6-, 2,7- and 3,6-bis-aminoalkylamido acridones are reported, which show a similar level of activity against telomerase in vitro compared to their acridine counterparts. Computer modelling and calculations of relative binding energies suggest an equivalent binding mode to human intramolecular G-quadruplex DNA, but with significantly reduced affinity, as a result of the limited delocalisation of the acridone chromophore compared to the acridine system. Thermal melting studies on acridone and acridine quadruplex complexes using a FRET approach support these predictions. Long-term cell proliferation studies at sub-cytotoxic doses with two representative acridones using the SKOV3 cell line, show that neither compound produces growth arrest, in contrast with the effects produced by the tri-substituted acridine compound BRACO-19. It is concluded that telomerase inhibitory activity is a necessary though by itself insufficient property in order for cellular growth arrest to occur at sub-toxic concentrations, and that tight quadruplex binding is also required.  相似文献   
488.
The enzyme 17beta-hydroxysteroid dehydrogenase is required for the synthesis and 11beta-hydroxysteroid dehydrogenase for the regulation of androgens in rat Leydig cells. This histochemical study describes ontogenetic changes in distribution and intensity of these enzymes in Leydig cells from postnatal day (pnd) 1-90. Using NAD or NADP as the cofactor, 17beta-hydroxysteroid dehydrogenase (substrate: 5-androstene-3beta,17beta-diol) peaks were observed on pnd 16 for fetal Leydig cells and on pnd 19 and 37 for adult Leydig cells. Between pnd 13 and 25 the fetal cells showed a higher intensity for the 17beta-enzyme than the adult cells; more fetal Leydig cells were stained with NADP, whereas more adult cells were positive with NAD on pnd 13 and 16. A nearly identical distribution of 11beta-hydroxysteroid dehydrogenase (substrate: corticosterone) was observed with NAD or NADP as the cofactor; the reaction was present from pnd 31 onwards, first in a few adult Leydig cells and later in almost all these cells homogeneously. The ontogenetic curves of the two enzymes show an inverse relationship. To conclude: (1) Generally, a stronger reaction for 17beta-hydroxysteroid dehydrogenase is shown with NAD as cofactor than with NADP; using NADP, fetal Leydig cells show a stronger staining than adult Leydig cells. (2) The data possibly support the notion of a new isoform of 11beta-hydroxysteroid dehydrogenase in addition to types 1 and 2.  相似文献   
489.
Eclipta alba (False daisy) is an important medicinal plant with well-known antihepatotoxic activity. However, no previous in vitro studies are available for its callus culture for increased production of antioxidant secondary metabolites. Herein, we maintained a competent protocol for callus culture of E. alba using stem and leaf explants grown on MS medium containing various concentrations of thidiazuron, 6-benzylaminopurine (BAP) either alone or in association with α-naphthalene acetic acid (NAA). Among all the applied plant growth regulators, BAP along with NAA resulted in maximal dry biomass of 18.0 and 13.8 g/l for stem and leaf explants, respectively. Furthermore, the highest production of phenolics (375.7 mg/l for stem-associated callus and 298 mg/l for leaf-associated callus) and flavonoids (62.0 and 52.3 mg/l for stem- and leaf-associated callus, respectively) were found to be present in optimized callus culture. Antioxidant activity was also elucidated for both stem and leaf derived calli. The highest antioxidant activities (~?93.5%) were witnessed for stem and leaf associated calli at set concentrations of 3.0 mg/l BAP?+?1.0 mg/l NAA and 4.0 mg/l BAP, respectively. High-performance liquid chromatography analyses revealed optimum accumulation of coumarin (1.98 mg/g DW) and wedelolactone (49.63 mg/g DW) in leaf associated callus and desmethylwedelolactone (69.96 mg/g DW), β-amyrin (0.8179 mg/g DW) and eclalbatin (0.3202 mg/g DW) in stem associated callus at optimized concentration.  相似文献   
490.
A novel mixing approach was utilized with a highly sensitive chemiluminescence (CL) method to determine the total phenolic content (TPC) in honey samples using an acidic potassium permanganate–formaldehyde system. The mixing approach was based on exploiting the mixing efficiency of nanodroplets generated in a microfluidic platform. Careful optimization of the instrument setup and various experimental conditions were employed to obtain excellent sensitivity. The mixing efficiency of the droplets was compared with the CL signal intensity obtained using the common serpentine chip design, with both approaches using at a total flow rate of 15 μl min?1; the results showed that the nanodroplets provided 600% higher CL signal intensity at this low flow rate. Using the optimum conditions, calibration equations, limits of detection (LOD) and limits of quantification (LOQ) for gallic acid (GA), caffeic acid (CA), kaempferol (KAM), quercetin (QRC) and catechin (CAT) were obtained. The LOD ranged from 6.2 ppb for CA to 11.0 ppb for QRC. Finally, the method was applied for the determination of TPC in several local and commercial honey samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号