首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   15篇
  2023年   4篇
  2022年   4篇
  2021年   11篇
  2020年   7篇
  2019年   30篇
  2018年   14篇
  2017年   2篇
  2016年   13篇
  2015年   5篇
  2014年   13篇
  2013年   15篇
  2012年   7篇
  2011年   12篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   7篇
  2006年   16篇
  2005年   3篇
  2004年   4篇
  1998年   1篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   5篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1970年   2篇
  1967年   2篇
  1964年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
11.
Plant cells often increase cold tolerance by reprogramming their genes expression which results in adjusted metabolic alternations, a process enhanced under cold acclimation (CA) phase. In present study, we assessed the changes of membrane fatty acid compositions and defense machine (like antioxidative enzymes) along with damage indexes like electrolyte leakage index (ELI) and malondialdehyde (MDA) during CA, cold stress (CS) and recovery (R) phases in chickpea (Cicer arietinum L.). Results showed an increase in unsaturated fatty acids ratio compare to saturated ones which is a sign of cold tolerance especially after CA phase. Antioxidant enzymes had an important role during CA and R phases while CS affected their activity which can be a sign for associating other metabolites or enzymes activities to create cold tolerance in plants. To investigation of enzymes assay under experimental treatments, the expression pattern of some enzymes including superoxide dismutase (sod), catalase (cat) and lipoxygenase (lox) was studied using quantitative real time PCR. LOX activity has shown a bilateral behavior: a positive relation with membrane damage index in CA and an interesting link with double bond index (DBI) in CS indicating probably its role in secondary metabolites like jasmonic acid signaling pathway. It was suggested that increased DBI and low LOX activity under CS could be a reason for plant cold tolerance.  相似文献   
12.
13.
14.
Evading immune destruction is a hallmark of cancer. Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid immune cells, are thought to foster the establishment of an immunosuppressive tumor microenvironment, but it remains unclear how. This study aims to determine the levels of circulating MDSCs and their subpopulations and test their immunosuppressive functions in patients with breast cancer (BC). We analyzed the fractions of MDSCs in freshly isolated peripheral blood mononuclear cells of patients with BC and healthy donors using flow cytometry. Circulating MDSCs were further phenotyped using fluorescently labeled antihuman monoclonal antibodies. Coculture experiments revealed the effects of MDSCs on CD3+ T cell response. Moreover, we correlated circulating MDSC levels with clinicopathological features of patients with BC. We show that the fraction of HLA-DR CD33 + MDSCs in peripheral blood is about 10-fold higher in patients with BC than in healthy control individuals. The levels of all MDSC subpopulations, including monocytic and granulocytic MDSCs, are significantly elevated. Coculture experiments of purified HLA-DR CD33 + MDSCs and CD3 + T cells demonstrate that T cell proliferation is more effectively inhibited by BC patient-derived MDSCs than by healthy control MDSCs. Moreover, increased circulating MDSC levels robustly associate with advanced BC stage and positive lymph node status. By being more abundant and more effective T cell suppressors, BC patient-derived circulating MDSCs exert a dual immunosuppressive effect. Our findings pave the way to develop novel diagnostic and immunotherapeutic strategies, aimed at detecting and inhibiting MDSCs in patients with BC.  相似文献   
15.
miR-224 is associated with polycystic ovary syndrome (PCOS) that is an epidemic in reproductive age women. Most studies of miR-224 have focused on in vitro analyses, whereas the in vivo effects are not widely understood. In this study, we have conducted in silico analysis and found two potential miR-224 target genes, Ptx3 and Smad4 that have roles in folliculogenesis. Because patients with PCOS have decreased numbers of follicular cells related to cell apoptosis, we also investigated two apoptotic genes, Bax and Bcl2. We used the intraovarian injection method to deliver miR-224 into a mouse model. Histological examination of the ovaries was done by fluorescent microscope. Fertilization, cleavage, and developmental competence rates were counted under a stereomicroscope and compared between the studied groups. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of miR-224 was conducted to determine the levels of the studied genes in the oocytes, cumulus cells, and blastocysts. The numbers of oocytes and fertilization rate indicated a higher apoptosis index ( p < 0.05) and increased numbers of degenerated embryos with irregular blastomeres and fragmented cytoplasm in the experimental group. RT-PCR results indicated a significant increase in miR-224 levels in the manipulated group. Of the four analyzed genes, Ptx3, Smad4, and Bcl2 had decreased levels in the transfected group, with increased Bax expression ( p < 0.05). This data showed that miR-224 negatively affected ovulation in the mouse model by decreasing Ptx3 and Smad4 expressions. The changes in Bcl2 and Bax expression levels, as apoptosis biomarkers, showed that apoptosis was a secondary outcome of the effect of miR-224.  相似文献   
16.
Cerium oxide nanoparticles are associated with anticancer effects. While protecting normal cells, these nanoparticles exert their anticancer effects via oxidative stress and apoptosis in the cancer cells. In this study, the anticancer properties of nanoceria on fibrosarcoma cell line are evaluated. Cerium oxide nanoparticles were synthesized by the coprecipitation method and their anticancer effects on mouse fibrosarcoma tumor cells (WEHI164) were investigated. Viability assay was evaluated by MTT, and the DC-FDA assay performed for the detection of reactive oxygen species. For apoptosis assay, the annexin V/PI test was done as well as measuring the mRNA and protein expression levels of Bax and Bcl2 by real-time PCR and western blot method, respectively. Characterization of nanoceria reveals that synthesized nanoceria has cubic floruit structure with a size of about 30 nm. Toxicity assessment results show that nanoceria increases ROS levels and induced apoptosis in a dose-dependent manner in cancer cells (WEHI164), whereas low levels of toxicity were observed in normal cells (L929), even at the concentrations above 250 µg/ml in MTT assay. Real-time PCR and western blot assays showed that nanoceria could significantly increase the Bax expression in cancer cells. The results showed that nanoceria could act as a potential therapeutic agent for the treatment of fibrosarcoma.  相似文献   
17.
18.
19.
MicroRNAs (miRNAs) regulate several biological and physiological processes in mammalian cells, including cellular proliferation, differentiation, apoptosis, and metabolism. Recent studies have confirmed the alteration of them during the cancer development. Matrix metalloproteinases (MMPs), belonging to the large family of proteases, have also been demonstrated to play crucial roles in tissue remodeling, and to support cancer progression and metastasis. There are several known miRNAs which regulate the MMP family and their expression. The expression profiles of miRNAs involved in MMP regulation, change during cancer progression, and metastasis. The present review focuses on important miRNAs capable of targeting MMPs through direct and indirect interactions during the breast cancer development, progression, and metastasis.  相似文献   
20.
Theranostic nanoparticles (NPs) are promising for opening new windows toward personalized disease management. Using a single particle capable of both diagnosis and drug delivery, is the major benefit of such particles. In the present study, chitosan NPs were used as a dual action carrier for doxorubicin (DOX; chemotherapeutic agent) and superparamagnetic iron oxide nanoparticles (SPIONs; imaging agent). SPIONs and DOX were loaded at different concentrations within poly-l -arginine-chitosan-triphosphate matrix (ACSD) using the ionic gelation method. NPs’ size were in the range of 184.33 ± 4.4 nm. Drug release analysis of DOX loaded NPs (NP-DOX) showed burst release at pH 5.5 (as in tumor environment) and slow release at pH 7.4 (physiological condition), demonstrating pH-sensitive drug release profile. NP-DOX internalization was confirmed by flowcytometry and fluorescent microscopy. Uptake process results were corroborated by accumulation of drug in the intracellular space. Iron content was evaluated by inductively coupled plasma and prussian blue staining. In vitro magnetic resonance imaging (MRI) showed a decline in T 2 relaxation times by increasing iron concentration. MRI analysis also confirmed uptake of NPs at the optimum concentration in C6 glioma cells. In conclusion, ACSD NPs could be utilized as a promising theranostic formulation for both diagnosis and treatment of glioblastoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号