首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   8篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1975年   1篇
  1974年   2篇
  1973年   5篇
  1972年   2篇
  1971年   3篇
  1969年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
21.
Glutamate 1-semialdehyde aminotransferase (GSA-AT) is the last enzyme in the C5 pathway converting glutamate into the tetrapyrrole precursor delta-aminolevulinate in plants, algae, and several bacteria. Sequence analysis of the genes encoding GSA-AT in barley, Synechococcus, and Escherichia coli revealed 50-70% similarity in the primary structures of the proteins. The enzyme is inhibited rapidly by gabaculine when added in approximately stoichiometric amounts with the enzyme. A gabaculine-tolerant Synechococcus strain, GR6, was found to produce a GSA-AT less sensitive to the inhibitor. Accordingly, the mutant gene was isolated and sequenced. In comparison with the wild-type gene it contains a deletion of nine nucleotides (position 12-20) and a guanine to adenine substitution (position 743). This resulted in the loss of the amino acids serine, proline, and phenylalanine (position 5-7) close to the NH2 terminus of the enzyme and an exchange of Met-248 for isoleucine in the middle of the polypeptide chain. Wild-type and mutant GSA-AT were expressed in E. coli and purified close to homogeneity. Although the specific activity of the mutant GSA-AT was only one-fifth of the wild type, it displayed a 100-fold increased resistance to gabaculine. Peaks in the absorption spectrum of the purified recombinant GSA-ATs at 335 and 417 nm are typical of a transaminase containing a B6 cofactor. Incubation with substrate and with inhibitor induced spectral changes characteristic of other gabaculine-sensitive, B6-requiring enzymes.  相似文献   
22.
23.
The synthesis of δ-aminolevulinate from glutamate by Chlamydomonas reinhardtii membrane-free cell homogenates requires Mg2+, ATP, and NADPH as cofactors. The pH optimum is about 8.3. When analyzed by a Fractogel TSK gel filtration column the δ-aminolevulinate synthesizing enzymes, including glutamate-1-semialdehyde aminotransferase, elute with an apparent molecular weight of about 45,000. The enzymes obtained from the gel filtration column were separated into three fractions by affinity column chromatography. One fraction binds to heme-Sepharose, one to Blue Sepharose, while the enzyme converting the putative glutamate-1-semialdehyde to δ-aminolevulinic acid is retained by neither column. All three fractions are necessary for the conversion of glutamate to δ-aminolevulinate. The δ-aminolevulinate synthesizing enzymes from Chlamydomonas are sensitive to inhibition by heme but not sensitive to inhibition by protoporphyrin.  相似文献   
24.
Bioactive compounds entrapped in plant materials can be effectively recovered using fungal enzymes. Cinnamomum zeylanicum Sri Wijaya (SW) and Sri Gemunu (SG) accessions and commercially available C. zeylanicum (CC) were subjected to fungal pretreatment and extracted with pressured water (PWE, 0·098 MPa). Thirteen fungal species were isolated and the substrate utilization ability of the species was tested using cellulose, pectin and lignin (indirectly). Total phenolic content (TPC, Folin–Ciocalteu method), proanthocyanidin content (PC, vanillin method) and α-amylase and α-glucosidase inhibitory potential of the extracts were evaluated. The anti-diabetic drug, Acarbose was used as the positive control. Trichoderma harzianum (MH298760) showed the highest cell lysis ability and hence was used for the microbial pretreatment process. Extracts of SW treated with T. harzianum species (Pre-SW) gave the highest percentage yield (4·08% ± 0·15%), significantly potent inhibition (P < 0·05) of α-amylase and α-glucosidase activities (IC50 57 ± 8 and 36 ± 8 μg ml−1 respectively), TPC (2·24 ± 0·02 mg gallic acid equivalent g−1), and PC (48·2 ± 0·4 mg of catechin equivalent g−1) compared to Pre-SG, Pre-CC and nontreated samples. Trichoderma harzianum treatment can enhance the hypoglycaemic properties, PC and TPC of Cinnamon extracts and provide new insights into the recovery of phytochemicals.  相似文献   
25.
26.
Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from l ‐valine and l ‐isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been isolated from cassava. The paralogs display 96% amino acid identity, and belong to a family containing cyanogenic glucoside‐specific UGTs from Sorghum bicolor and Prunus dulcis. Recombinant UGT85K4 and UGT85K5 produced in Escherichia coli were able to glucosylate acetone cyanohydrin and 2‐hydroxy‐2‐methylbutyronitrile, forming linamarin and lotaustralin. UGT85K4 and UGT85K5 show broad in vitro substrate specificity, as documented by their ability to glucosylate other hydroxynitriles, some flavonoids and simple alcohols. Immunolocalization studies indicated that UGT85K4 and UGT85K5 co‐occur with CYP79D1/D2 and CYP71E7 paralogs, which catalyze earlier steps in cyanogenic glucoside synthesis in cassava. These enzymes are all found in mesophyll and xylem parenchyma cells in the first unfolded cassava leaf. In situ PCR showed that UGT85K4 and UGT85K5 are co‐expressed with CYP79D1 and both CYP71E7 paralogs in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf. Based on the data obtained, UGT85K4 and UGT85K5 are concluded to be the UGTs catalyzing in planta synthesis of cyanogenic glucosides. The localization of the biosynthetic enzymes suggests that cyanogenic glucosides may play a role in both defense reactions and in fine‐tuning nitrogen assimilation in cassava.  相似文献   
27.
Stable inheritance of the transgene, consistent expression and competitive agronomic properties of transgenic crops are important parameters for successful use of the latter. These properties have been analyzed with 18 homozygous transgenic barley lines of the cultivar Golden Promise. The lines originated from three independent primary transformants obtained by the biolistic method with three plasmids containing respectively, the bar gene, the uidA gene and the gene for a protein-engineered heat-stable (1,3–1,4)-β-glucanase. Three production levels of recombinant β-glucanase were identified in homozygous transgenic T3 plants, and these remained constant over a 3-year period. In micro-malting experiments, the heat-stable enzyme reached levels of up to 1.4 μg·mg−1 protein and survived kiln drying at levels of 70–100%. In the field trials of 1997 and 1998 the transgenic lines had a reduced 1000-grain weight as well as variable yield depressions compared to the Golden Promise progenitor. In 1999 large-scale propagations of the lines with the highest recombinant enzyme synthesis during germination and of Golden Promise were studied at three different locations. In an irrigated field transgenic lines yielded approximately 6 t·ha−1 and Golden Promise 7.7 t·ha−1. Cross-breeding was carried out to transfer the transgene into a more suitable genetic background. Crosses of the semi-dwarf ari-e mutant Golden Promise gave rise to the four morphological phenotypes nutans, high erect, erect, and ari-e. Two improvements were achieved: (1) F3 lines homozygous for the expression of heat-stable (1,3−1,4)-β-glucanase were found among lines that were homozygous for each of the four morphological phenotypes; (2) improved 1000-grain weights and yields with respect to those of the original transformants were observed in some F4 lines homozygous for the morphological phenotypes and for the transgene. In the case of a homozygous nutans line, the transgenic plants had a higher 1000-grain weight than those lacking the transgene. Like mutants providing useful output traits, transgenic plants will often have to be improved by relocating the gene into more suitable genotypes. Received: 6 March 2000 / Accepted: 14 April 2000  相似文献   
28.

Introduction

Hyperuricemia is the greatest risk factor for gout and is caused by an overproduction and/or inefficient renal clearance of urate. The fractional renal clearance of urate (FCU, renal clearance of urate/renal clearance of creatinine) has been proposed as a tool to identify subjects who manifest inefficient clearance of urate. The aim of the present studies was to validate the measurement of FCU by using spot-urine samples as a reliable indicator of the efficiency of the kidney to remove urate and to explore its distribution in healthy subjects and gouty patients.

Methods

Timed (spot, 2-hour, 4-hour, 6-hour, 12-hour, and 24-hour) urine collections were used to derive FCU in 12 healthy subjects. FCUs from spot-urine samples were then determined in 13 healthy subjects twice a day, repeated on 3 nonconsecutive days. The effect of allopurinol, probenecid, and the combination on FCU was explored in 11 healthy subjects. FCU was determined in 36 patients with gout being treated with allopurinol. The distribution of FCU was examined in 118 healthy subjects and compared with that from the 36 patients with gout.

Results

No substantive or statistically significant differences were observed between the FCUs derived from spot and 24-hour urine collections. Coefficients of variation (CVs) were both 28%. No significant variation in the spot FCU was obtained either within or between days, with mean intrasubject CV of 16.4%. FCU increased with probenecid (P < 0.05), whereas allopurinol did not change the FCU in healthy or gouty subjects. FCUs of patients with gout were lower than the FCUs of healthy subjects (4.8% versus 6.9%; P < 0.0001).

Conclusions

The present studies indicate that the spot-FCU is a convenient, valid, and reliable indicator of the efficiency of the kidney in removing urate from the blood and thus from tissues. Spot-FCU determinations may provide useful correlates in studies investigating molecular mechanisms underpinning the observed range of efficiencies of the kidneys in clearing urate from the blood.

Trial Registration

ACTRN12611000743965  相似文献   
29.
Magnesium chelatase catalyses the insertion of Mg2+ into protoporphyrin and is found exclusively in organisms which synthesise chlorophyll or bacteriochlorophyll. Soluble protein preparations containing >10 mg protein/ml, obtained by gentle lysis of barley plastids and Rhodobacter sphaeroplasts, inserted Mg2+ into deuteroporphyrin IX in the presence of ATP at rates of 40 and 8 pmoles/mg protein per min, respectively. With barley extracts optimal activity was observed with 40 mM Mg2+. The activity was inhibited by micromolar concentrations of chloramphenicol. Mutations in each of three genetic loci, Xantha-f, -g and -h, in barley destroyed the activity. However, Mg-chelatase activity was reconstituted in vitro by combining pairwise the plastid stroma protein preparations from non-leaky xantha-f, -g and -h mutants. This establishes that, as in Rhodobacter, three proteins are required for the insertion of magnesium into protoporphyrin IX in barley. These three proteins, Xantha-F, -G and -H, are referred to as Mg-chelatase subunits and they appear to exist separate from each other in vivo. Active preparations from barley and Rhodobacter yielded pellet and supernatant fractions upon centrifugation for 90 min at 272 000 × g. The pellet and the supernatant were inactive when assayed separately, but when they were combined activity was restored. Differential distribution of the Mg-chelatase subunits in the fractions was established by in vitro complementation assays using stroma protein from the xantha-f, -g, and -h mutants. Xantha-G protein was confined to the pellet fraction, while Xantha-H was confined to the supernatant. Reconstitution assays using purified recombinant BchH, BchI and partially purified BchD revealed that the pellet fraction from Rhodobacter contained the BchD subunit. The pellet fractions from both barley and Rhodobacter contained ribosomes and had an A260:A280 ratio of 1.8. On sucrose density gradients both Xantha-G and BchD subunits migrated with the plastid and bacterial ribosomal RNA, respectively. Received: 9 September 1996 / Accepted: 22 October 1996  相似文献   
30.
Magnesium chelatase catalyses the insertion of Mg2+ into protoporphyrin and is found exclusively in organisms which synthesise chlorophyll or bacteriochlorophyll. Soluble protein preparations containing >10 mg protein/ml, obtained by gentle lysis of barley plastids and Rhodobacter sphaeroplasts, inserted Mg2+ into deuteroporphyrin IX in the presence of ATP at rates of 40 and 8 pmoles/mg protein per min, respectively. With barley extracts optimal activity was observed with 40 mM Mg2+. The activity was inhibited by micromolar concentrations of chloramphenicol. Mutations in each of three genetic loci, Xantha-f, -g and -h, in barley destroyed the activity. However, Mg-chelatase activity was reconstituted in vitro by combining pairwise the plastid stroma protein preparations from non-leaky xantha-f, -g and -h mutants. This establishes that, as in Rhodobacter, three proteins are required for the insertion of magnesium into protoporphyrin IX in barley. These three proteins, Xantha-F, -G and -H, are referred to as Mg-chelatase subunits and they appear to exist separate from each other in vivo. Active preparations from barley and Rhodobacter yielded pellet and supernatant fractions upon centrifugation for 90 min at 272?000?×?g. The pellet and the supernatant were inactive when assayed separately, but when they were combined activity was restored. Differential distribution of the Mg-chelatase subunits in the fractions was established by in vitro complementation assays using stroma protein from the xantha-f, -g, and -h mutants. Xantha-G protein was confined to the pellet fraction, while Xantha-H was confined to the supernatant. Reconstitution assays using purified recombinant BchH, BchI and partially purified BchD revealed that the pellet fraction from Rhodobacter contained the BchD subunit. The pellet fractions from both barley and Rhodobacter contained ribosomes and had an A260:A280 ratio of 1.8. On sucrose density gradients both Xantha-G and BchD subunits migrated with the plastid and bacterial ribosomal RNA, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号