首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   9篇
  2011年   7篇
  2010年   12篇
  2009年   8篇
  2008年   7篇
  2007年   15篇
  2006年   9篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   6篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1984年   1篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
  1959年   1篇
  1958年   6篇
  1957年   4篇
  1956年   6篇
  1955年   3篇
  1953年   3篇
  1952年   1篇
  1951年   4篇
  1950年   3篇
  1937年   1篇
  1926年   1篇
  1916年   1篇
排序方式: 共有175条查询结果,搜索用时 31 毫秒
81.
82.
83.
84.
The Aquatic Warbler Acrocephalus paludicola is one of the most threatened Western Palearctic passerine species, classified as globally Vulnerable. With its breeding grounds relatively secure, a clear need remains for the monitoring and protection of the migration and wintering grounds of this rare and endangered migrant. Recent research has shown that the Aquatic Warbler migrates through northwest Africa in autumn and spring. The wintering grounds are apparently limited to wetlands of sub-Saharan West Africa, with records from only about 20 localities in Mauritania, Mali, Senegal and Ghana. Given the lack of knowledge of its whereabouts, we decided to use the available data to predict the wintering distribution of the Aquatic Warbler with the help of Geographic Information Systems (GIS). We used a novel approach to model the distribution of rarely recorded species, which is based on a combination of presence-only and presence–absence modelling techniques. Using the program BIOMOD, we thus generated four progressively more conservative predictions of where the Aquatic Warbler overwinters in Africa. Whereas the most permissive model predicts the Aquatic Warbler to be found in a latitudinal band stretching from the Senegal river delta all the way to the Red Sea coast, the most restrictive model suggests a much smaller area concentrated within the regions around the Senegal river delta in northern Senegal and southern Mauritania and around the Niger inundation zone in southern Mali and eastern Burkina Faso. Such model predictions may be useful guidelines to focus further field research on the Aquatic Warbler. Given the excellent model predictions in this study, this novel technique may prove useful to model the distribution of other rare and endangered species, thus providing a means to guide future survey efforts.  相似文献   
85.
POPULATION GENETICS OF EUROPEAN ANODONTINAE (BIVALVIA: UNIONIDAE)   总被引:3,自引:0,他引:3  
Enzyme electrophoresis was used to study population geneticsand molecular differentiation of European Anodontmae. The existenceof two genera (Anodonta Lamarck 1799 and Pseudanodonta Bour-guignat1876) is supported by the number of diagnostic loa (4) and Net'sD > 0.463 in all cases. In western and central Europe thereare two species of Anodonta, A. anatina (Linnaeus 1758) andA cygnea (Linnaeus 1758) while two other taxa of still uncertainrank were identified in the Mediterranean area. An estimatedmedium level of gene flow and pronounced genetic differentiationbetween-the taxa support this view. Data on genetic distancessuggest that the diversification of European Anodontinae tookplace in the middle-late Pleistocene (Received 15 August 1995; accepted 5 February 1996)  相似文献   
86.
Temperate grasslands contribute about 20% to the global C budget. Elevation of atmospheric CO2 concentration (pCO2) could lead to additional C sequestration into these ecosystems. Microbial‐derived C in the soil comprising about 1–5% of total soil organic carbon may be an important ‘pool’ for long‐term storage of C under future increased atmospheric CO2 concentrations. In our study, the impact of elevated pCO2 on bacterial‐ and fungal‐derived C in the soil of Lolium perenne pastures was investigated under free air carbon dioxide enrichment (FACE) conditions. For 7 years, L. perenne swards were exposed to ambient and elevated pCO2 (36 and 60 Pa pCO2, respectively). The additional CO2 in the FACE plots was depleted in 13C compared with ambient plots, so that ‘new’ (<7 years) C inputs in the form of microbial‐derived residues could be determined by means of stable C isotope analysis. Amino sugars in soil are reliable organic biomarkers for indicating the presence of microbial‐derived residues, with particular amino sugars indicative of either bacterial or fungal origin. It is assumed that amino sugars are stabilized to a significant extent in soil, and so may play an important role in long‐term C storage. In our study, we were also able to discriminate between ‘old’ (> 7 years) and ‘new’ microbial‐derived C using compound‐specific δ13C analysis of individual amino sugars. This new tool was very useful in investigating the potential for C storage in microbial‐derived residues and the turnover of this C in soil under increased atmospheric pCO2. The 13C signature of individual amino sugars varied between ?17.4‰ and ?39.6‰, and was up to 11.5% depleted in 13C in the FACE plots when compared with the bulk δ13C value of the native C3 L. perenne soil. New amino sugars in the bulk soil contributed up to 16% to the overall amino sugar pool after the first year and between 62% and 125% after 7 years of exposure to elevated pCO2. Amounts of new glucosamine increased by the greatest amount (16–125%) during the experiment, followed by mannosamine (?9% to 107%), muramic acid (?11% to 97%), and galactosamine (15–62%). Proportions of new amino sugars in particle size fractions varied between 38% for muramic acid in the clay fraction and 100% for glucosamine and galactosamine in the coarse sand fraction. Summarizing, during the 7‐year period, amino sugars constituted only between 0.9% and 1.6% of the total SOC content. Therefore, their absolute significance for long‐term C sequestration is limited. Additionally new amino sugars were only sequestered in the silt fraction upon elevated pCO2 exposure while amino sugar concentrations in the clay fraction decreased. Overall, amino sugar concentrations in bulk soil did not change significantly upon exposure to elevated pCO2. The calculated mean residence time of amino sugars was surprisingly low varying between 6 and 90 years in the bulk soil, and between 3 and 30 years in the particle size fractions, representing soil organic matter pools with different but relatively low turnover times. Therefore, compound‐specific δ13C analysis of individual amino sugars clearly revealed a high amino sugar turnover despite more or less constant amino sugar concentrations over a 7 years period of exposure to elevated pCO2.  相似文献   
87.
88.
Odonates (dragonflies and damselflies) are important indicators for monitoring anthropogenic impacts on freshwater ecosystems. We developed a panel of microsatellite loci for the keeled skimmer Orthetrum coerulescens, a libellulid dragonfly inhabiting small streams. By using two different isolation techniques, nine microsatellite loci have been isolated. Screening of 209 individuals resulted in an overall number of 88 alleles, ranging from three to 19 alleles per locus. The observed heterozygosity ranged from 0.37 to 0.83. One locus showed significant deviation from Hardy–Weinberg equilibrium.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号