首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   7篇
  国内免费   1篇
  2021年   3篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   8篇
  2007年   10篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
31.
Mitotic‐spindle organizing protein associated with a ring of γ‐tubulin 1 (MOZART1) is an 8.5 kDa protein linked to regulation of γ‐tubulin ring complexes (γTuRCs), which are involved in nucleation of microtubules. Despite its small size, MOZART1 represents a challenging target for detailed characterization in vitro. We described herein a protocol for efficient production of recombinant human MOZART1 in Escherichia coli and assessed the properties of the purified protein using a combination of size exclusion chromatography coupled with multiangle light scattering (SEC‐MALS), dynamic light scattering (DLS), and nuclear magnetic resonance (NMR) experiments. MOZART1 forms heterogeneous oligomers in solution. We identified optimal detergent and buffer conditions for recording well resolved NMR experiments allowing nearly full protein assignment and identification of three distinct alpha‐helical structured regions. Finally, using NMR, we showed that MOZART1 interacts with the N‐terminus (residues 1–250) of GCP3 (γ‐tubulin complex protein 3). Our data illustrate the capacity of MOZART1 to form oligomers, promoting multiple contacts with a subset of protein partners in the context of microtubule nucleation.  相似文献   
32.
The translation initiation efficiency of a given mRNA is determined by its translation initiation region (TIR). mRNAs are selected into 30S initiation complexes according to the strengths of the secondary structure of the TIR, the pairing of the Shine-Dalgarno sequence with 16S rRNA, and the interaction between initiator tRNA and the start codon. Here, we show that the conversion of the 30S initiation complex into the translating 70S ribosome constitutes another important mRNA control checkpoint. Kinetic analysis reveals that 50S subunit joining and dissociation of IF3 are strongly influenced by the nature of the codon used for initiation and the structural elements of the TIR. Coupling between the TIR and the rate of 70S initiation complex formation involves IF3- and IF1-induced rearrangements of the 30S subunit, providing a mechanism by which the ribosome senses the TIR and determines the efficiency of translational initiation of a particular mRNA.  相似文献   
33.
Over the last 10 years - in Microbes and Infection - the publications dealing with protozoan parasites were mainly providing insights on the pathogenic processes leading to the local or systemic damages in the mammals, these parasitic organisms exploit/subvert as hosts. As a result, many investigators introduced the objectives of their analysis by referring to "host-pathogen" interactions. Though we, as investigators, are all determined to decipher the pathogenic processes which can indeed be coupled to the parasite uncontrolled development, I think that the parasites - alike the living organisms they subvert as hosts - need to be considered as living organisms per se, instead of being considered as "pathogens". Such a conceptual frame will promote research on the processes on which relies their perpetuation whatever the level under investigations - individual and/or population level. Only the unicellular protozoan parasites of the genus Leishmania known to be hosted by blood-feeding insects and mammals will be further considered in this brief contribution.  相似文献   
34.
Bacterial translation initiation factor 2 (IF2) is a GTPase that promotes the binding of the initiator fMet‐tRNAfMet to the 30S ribosomal subunit. It is often assumed that IF2 delivers fMet‐tRNAfMet to the ribosome in a ternary complex, IF2·GTP·fMet‐tRNAfMet. By using rapid kinetic techniques, we show here that binding of IF2·GTP to the 30S ribosomal subunit precedes and is independent of fMet‐tRNAfMet binding. The ternary complex formed in solution by IF2·GTP and fMet‐tRNA is unstable and dissociates before IF2·GTP and, subsequently, fMet‐tRNAfMet bind to the 30S subunit. Ribosome‐bound IF2 might accelerate the recruitment of fMet‐tRNAfMet to the 30S initiation complex by providing anchoring interactions or inducing a favourable ribosome conformation. The mechanism of action of IF2 seems to be different from that of tRNA carriers such as EF‐Tu, SelB and eukaryotic initiation factor 2 (eIF2), instead resembling that of eIF5B, the eukaryotic subunit association factor.  相似文献   
35.
PorA and PorH are two small membrane proteins from the outer membrane of Corynebacterium glutamicum, which have been shown to form heteromeric ion channels and to be post-translationally modified by mycolic acids. Any structural details of the channel could not be analyzed so far due to tremendous difficulties in the production of sufficient amounts of protein samples. Cell-free (CF) expression is a new and remarkably successful strategy for the production of membrane proteins for which toxicity, membrane targeting, and degradation are key issues. In addition, reaction conditions can easily be modified to modulate the quality of synthesized protein samples. We developed an efficient CF expression strategy to produce the channel subunits devoid of post-translational modifications. (15)N-labeled PorA and PorH samples were furthermore characterized by NMR and gave well resolved spectra, opening the way for structural studies. The comparison of ion channel activities of CF-expressed proteins with channels isolated from C. glutamicum gave clear insights on the influence of the mycolic acid modification of the two subunits on their functional properties.  相似文献   
36.

Background

Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification.

Results

We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin “states”, individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse “exceptions” from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin.

Conclusions

These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-988) contains supplementary material, which is available to authorized users.  相似文献   
37.
38.
Abstract

The last decade has witnessed the reawakening of cancer metabolism as a therapeutic target. In particular, inhibition of pyruvate dehydrogenase kinase (PDK) holds remarkable promise. Dichloroacetic acid (DCA), currently undergoing clinical trials, is a unique PDK inhibitor in which it binds to the allosteric pyruvate site of the enzyme. However, the safety of DCA as a drug is compromised by its neurotoxicity, whereas its usefulness as an investigative tool is limited by the high concentrations required to exert observable effects in cell culture. Herein, we report the identification – by making use of saturation-transfer difference NMR spectroscopy, enzymatic assays and computational methods – of furoate and thenoate derivatives as allosteric pyruvate-site-binding PDK2 inhibitors. This work substantiates the pyruvate regulatory pocket as a druggable target.  相似文献   
39.
In previous studies, we reported that a) the adoptive transfer of parasite-specific L3T4+ T cells enhanced rather than inhibited the development of lesions induced by Leishmania major in normal BALB/c mice, and b) the depletion in vivo of L3T4+ T cells by administration of anti-L3T4 monoclonal antibody reversed the susceptibility of BALB/c mice to L. major. To further assess the role of specific L3T4+ T cells in the development of lesions induced by L. major in BALB/c mice, the frequency of parasite-specific T cells capable of mediating specific delayed-type hypersensitivity (DTH) reactivity was determined, by limiting dilution analysis, in the lymph nodes draining the lesions of susceptible (BALB/c) and resistant (CBA) mice. The numbers of L. major-specific DTH-mediating T cells was found to be substantially increased in the lymph nodes of infected BALB/c mice as compared with CBA mice. Moreover in CBA mice, analysis of the cell surface phenotype of the L. major-specific DTH-mediating T cells showed that these cells were equally represented in the L3T4+, Lyt-2-, and L3T4- Lyt-2+ subsets, whereas the majority of these cells in BALB/c mice expressed the L3T4+ Lyt-2- surface phenotype.  相似文献   
40.
The severe skin-destructive disease caused by Mycobacterium ulcerans, named Buruli ulcer, is the third most important mycobacterial disease in humans after tuberculosis and leprosy. Recently we demonstrated that M. ulcerans could colonize the salivary glands of the water bug, Naucoris cimicoides. In this study, we report that M. ulcerans may be delivered from the digested prey aspirate to the coelomic cavity via a unique headspace, the head capsule (HC). During the infected meal, we observed that M. ulcerans clusters adhered to the stylets that were retracted in the HC at the end of the meal. M. ulcerans was able to translocate from the HC to the coelomic cavity where it is phagocytosed by the plasmatocytes. These cells are subverted as shuttle cells and deliver M. ulcerans to the salivary glands. At this early stage of its parasitic life style, two other important features of M. ulcerans can be documented: first, mycolactone is not required for translocation of M. ulcerans into the HC, in contrast to the next step, colonization of the salivary glands; second, M. ulcerans clusters bind a member of the serpin protein family present in the salivary gland homogenate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号