首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1557篇
  免费   71篇
  2024年   4篇
  2023年   9篇
  2022年   8篇
  2021年   24篇
  2020年   21篇
  2019年   31篇
  2018年   32篇
  2017年   37篇
  2016年   47篇
  2015年   56篇
  2014年   66篇
  2013年   87篇
  2012年   108篇
  2011年   116篇
  2010年   69篇
  2009年   55篇
  2008年   103篇
  2007年   83篇
  2006年   74篇
  2005年   86篇
  2004年   78篇
  2003年   75篇
  2002年   58篇
  2001年   33篇
  2000年   30篇
  1999年   20篇
  1998年   8篇
  1997年   6篇
  1996年   7篇
  1995年   7篇
  1994年   10篇
  1993年   18篇
  1992年   13篇
  1991年   12篇
  1990年   15篇
  1989年   12篇
  1988年   10篇
  1987年   10篇
  1986年   10篇
  1985年   8篇
  1984年   11篇
  1983年   12篇
  1981年   3篇
  1979年   4篇
  1977年   4篇
  1976年   4篇
  1975年   10篇
  1974年   6篇
  1973年   7篇
  1969年   2篇
排序方式: 共有1628条查询结果,搜索用时 27 毫秒
21.
22.
Three new cycloartane glycosides, trigonoside I, II and III, and the known astragalosides I and II were isolated from the roots of Astragalus trigonus. The structures of the new glycosides were totally elucidated by high field (600 MHz) NMR analyses as cycloastragenol-6-O-β-xylopyranoside, cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-xylopyranosyl]-6-O-β- d-xylopyranoside and cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-(3-O-acetyl)-xylopyranosyl]-6-O-β-d-xylopyranoside.  相似文献   
23.
24.
From the aerial parts of Fritillaria thunbergii, three glycosidal Solanum alkaloids (basic steroid saponins) were isolated together with minor  相似文献   
25.
26.
Three monoclonal antibodies (MAbs1A2, 3C5, and 4C2) for human aldolase A [EC 4.1.2.13] were established. MAbs1A2, 3C5, and 4C2 were shown to belong to subclasses IgM, IgG1, and IgG2a, respectively. None of the MAbs inhibits aldolase A activity. Their epitopes were mapped in detail on the molecule by examining the reactivities of the MAbs to chimeric proteins between aldolases A and B [Kitajima et al. (1990) J. Biol. Chem. 265, 17493-17498] in ELISA and to the CNBr-cleaved fragments of aldolase A in immuno-blotting. MAbs1A2 and 3C5 reacted with sites located within amino acid residues 306-363 at the C-terminal region of the enzyme. MAb4C2 recognized an epitope of the enzyme present within amino acid residues 34-108 at the N-terminal region. In a competitive binding assay, MAbs1A2 and 3C5 competed with each other for binding to the antigen and also interfered with the binding of MAb4C2, whereas MAb4C2 failed to inhibit the binding of MAbs1A2 and 3C5 to the antigen. MAb3C5 showed a species-specificity in the reaction with the antigen; it reacted with human and rabbit aldolase A with similar reactivity but not at all with the rat and mouse enzymes, which differ from the human and rabbit enzymes in two amino acid residues at positions 328 and 348. Reactivities of MAbs to aldolase A were further examined with engineered enzymes containing an amino acid substitution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
27.
In Medaka embryos (at the stages of blastulation to organogenesis), we found the presence of free glycan of which structure is identical with the multiantennary N-linked sugar chain of L-hyosophorin molecules which were originally present in the cortical alveoli of the unfertilized eggs in their precursor high molecular form. The free glycan-enriched fraction was separated from L-hyosophorin by chromatography on DEAE-Sephadex A-25 and Sephadex G-50 after removal of the sialic acid residues with exo-sialidase. Composition analysis, 400-MHz 1H NMR spectroscopy, and pyridylamination-hydrazinolysis-nitrous acid deamination of the free glycan showed the presence of di-N-acetylchitobiosyl structure at the reducing end, suggesting that the free glycan chain was derived from L-hyosophorin by the action of a specific peptide:N-glycosidase (PNGase). When we combine the previous finding of the hyosophorin-derived unique pentaantennary free glycan chain in the flounder embryos [A. Seko et al. (1989) J. Biol. Chem. 264, 15922-15929], it is anticipated that PNGase-catalyzed de-N-glycosylation of L-hyosophorin would be required at a certain stage of embryogenesis for L-hyosophorin to play a yet undefined functional role during early development.  相似文献   
28.
Cytochrome P-450 was purified from pig testis mitochondria to a specific content of 13.1 n mol/mg of protein. The purified preparation was found to contain a single species of P-450, on sodium dodecyl sulfate polyacrylamide gel electrophoresis, with an apparent molecular weight of about 53000 +/- 2000. The cholesterol side chain-cleavage system could be reconstituted by mixing the purified cytochrome P-450, adrenodoxin reductase, adrenodoxin, cholesterol and NADPH. The rate of conversion of cholesterol to pregnenolone was 6.2 n mol/min/n mol of P-450 under the conditions employed. The absorption spectrum of the oxidized cytochrome P-450 had maxima at 416, 530 and 568 nm. The reduced CO-complex of the cytochrome P-450 exhibited an absorption maximum at 448 nm. The purified P-450 was subjected to microsequence analysis and its NH2-terminal amino acid sequence was found to show considerable homology with that of bovine adrenal P-450 (SCC).  相似文献   
29.
The effects of cross-linking of membrane proteins on hemolysis of human erythrocytes under high pressure (2.0 kbar) were examined. The membrane proteins were cross-linked by oxidation of their SH-groups with diamide (0.05-0.5 mM) under different pressures (1-1,000 bar) at which no hemolysis occurs. As the pressure during diamide treatment was raised, the degree of hemolysis under 2.0 kbar and the quantity of cytoskeletal proteins extracted in a low ionic strength medium were gradually decreased. However, both values were increased by reduction with dithiothreitol. From the determination of membrane SH-groups, it was found that cross-linking of membrane proteins by diamide was accelerated under pressure. Only in erythrocytes treated with diamide under pressure were parts of spectrin and ankyrin, in addition to band 3 and band 4.2 proteins, extracted by using Triton X-100. One- and two-dimensional SDS-PAGE of membrane proteins showed that cross-linking of the membrane with cytoskeletal meshwork through linking proteins, in addition to that of membrane proteins themselves, was formed only in the diamide treatment under pressure. These results indicate that pressure-induced hemolysis is greatly suppressed by the supramolecular-weight polymers formed among membrane proteins, and that the high pressure technique is useful for cross-linking membrane proteins with diamide.  相似文献   
30.
An NADH:(acceptor) oxidoreductase (EC 1.6.99.3) of human erythrocyte membrane was purified by DEAE-cellulose anion exchange, hydroxyapatite adsorption, and 5′-ADP-hexane-agarose affinity chromatographies after solubilization with Triton X-100. The purified reductase preparation was homogeneous and estimated to have an apparent molecular weight of 36,000 on SDS-polyacrylamide slab gel electrophoresis and of 144,000 on Sephadex G-200 gel filtration in the presence of 0.2% Triton X-100, whereas a soluble NADH-cytochrome b5 reductase of human erythrocyte had a molecular weight of 32,000 by both methods, indicating the existence of a distinct membrane reductase. Digestion of the membrane reductase with cathepsin D yielded a new polypeptide chain which gave the same relative mobility as the soluble reductase on SDS-polyacrylamide slab gel electrophoresis. The membrane enzyme, the cathepsin-digested enzyme, and the soluble enzyme all cross-reacted with the antibody to rat liver microsomal NADH-cytochrome b5 reductase. The enzyme had one mole FAD per 36,000 as a prosthetic group and could reduce K3Fe(CN)6, 2,6-dichlorophenolindophenol, cytochrome c, methemoglobin-ferrocyanide complex, cytochrome b5 and methemoglobin via cytochrome b5 when NADH was used as an electron donor. NADPH was less effective as an electron donor than NADH. The specific activity of the purified enzyme was 790 μmol ferricyanide reduced min?1 mg?1 and the turnover number was 40,600 mol ferricyanide reduced min?1 mol?1 FAD at 25 °C. The apparent Km values for NADH and cytochrome b5 were 0.6 and 20 μm, respectively, and the apparent V value was 270 μmol cytochrome b5 reduced min?1 mg?1. These kinetic properties were similar to those of the soluble NADH-cytochrome b5 reductase. The results indicate that the NADH:(acceptor) oxidoreductase of human erythrocyte membrane could be characterized as a membrane NADH-cytochrome b5 reductase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号