首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   16篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   12篇
  2013年   9篇
  2012年   19篇
  2011年   11篇
  2010年   9篇
  2009年   8篇
  2008年   5篇
  2007年   10篇
  2006年   9篇
  2005年   9篇
  2004年   9篇
  2003年   9篇
  2002年   4篇
  2001年   1篇
  1999年   4篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
71.
A semisynthetic diet fed to axenic mice was found to prevent the establishment of a Clostridium perenne strain in their intestinal tract. This inhibitory effect did not occur when axenic mice were preinoculated with a strain of Clostridium difficile. The inhibitory effect was related to the presence in the intestinal contents of axenic mice of both dietary copper and a dipeptide, aspartic-epsilon-lysine. When C. difficile was inoculated into axenic mice, the dipeptide disappeared from the digesta, and C. perenne became established even in the presence of high concentrations of copper.  相似文献   
72.
The effects of amino acid starvation on polysome conformation were analyzed comparatively in stringent (relA+) and relaxed (relA) bacteria by measuring the accessibility in vitro of ribosomal proteins to reductive methylation. In polysomes of stringent cells, the conformational state of two proteins (L13 and L29) appeared significantly changed by starvation. In polysomes isolated from relaxed mutants, the accessibility of five proteins (L5, L13, L29, L31 and L32) was found modified.  相似文献   
73.
Submicroscopic duplications along the long arm of the X-chromosome with known phenotypic consequences are relatively rare events. The clinical features resulting from such duplications are various, though they often include intellectual disability, microcephaly, short stature, hypotonia, hypogonadism and feeding difficulties. Female carriers are often phenotypically normal or show a similar but milder phenotype, as in most cases the X-chromosome harbouring the duplication is subject to inactivation. Xq28, which includes MECP2 is the major locus for submicroscopic X-chromosome duplications, whereas duplications in Xq25 and Xq26 have been reported in only a few cases. Using genome-wide array platforms we identified overlapping interstitial Xq25q26 duplications ranging from 0.2 to 4.76 Mb in eight unrelated families with in total five affected males and seven affected females. All affected males shared a common phenotype with intrauterine- and postnatal growth retardation and feeding difficulties in childhood. Three had microcephaly and two out of five suffered from epilepsy. In addition, three males had a distinct facial appearance with congenital bilateral ptosis and large protruding ears and two of them showed a cleft palate. The affected females had various clinical symptoms similar to that of the males with congenital bilateral ptosis in three families as most remarkable feature. Comparison of the gene content of the individual duplications with the respective phenotypes suggested three critical regions with candidate genes (AIFM1, RAB33A, GPC3 and IGSF1) for the common phenotypes, including candidate loci for congenital bilateral ptosis, small head circumference, short stature, genital and digital defects.  相似文献   
74.
STOP proteins are microtubule-associated, calmodulin-regulated proteins responsible for the high degree of stabilization displayed by neuronal microtubules. STOP suppression in mice induces synaptic defects affecting both short and long term synaptic plasticity in hippocampal neurons. Interestingly, STOP has been identified as a component of synaptic structures in neurons, despite the absence of microtubules in nerve terminals, indicating the existence of mechanisms able to induce a translocation of STOP from microtubules to synaptic compartments. Here we have tested STOP phosphorylation as a candidate mechanism for STOP relocalization. We show that, both in vitro and in vivo, STOP is phosphorylated by the multifunctional enzyme calcium/calmodulin-dependent protein kinase II (CaMKII), which is a key enzyme for synaptic plasticity. This phosphorylation occurs on at least two independent sites. Phosphorylated forms of STOP do not bind microtubules in vitro and do not co-localize with microtubules in cultured differentiating neurons. Instead, phosphorylated STOP co-localizes with actin assemblies along neurites or at branching points. Correlatively, we find that STOP binds to actin in vitro. Finally, in differentiated neurons, phosphorylated STOP co-localizes with clusters of synaptic proteins, whereas unphosphorylated STOP does not. Thus, STOP phosphorylation by CaMKII may promote STOP translocation from microtubules to synaptic compartments where it may interact with actin, which could be important for STOP function in synaptic plasticity.  相似文献   
75.
Strontium ranelate exerts both an anti-catabolic and an anabolic effect on bone cells. To further investigate the molecular mechanism whereby strontium ranelate inhibits bone resorption, we focused our attention on the effects of strontium ranelate on osteoclast apoptosis and on the underlying mechanism(s). Using primary mature rabbit osteoclasts, we demonstrated that strontium (Sro2+) dose-dependently stimulates the apoptosis of mature osteoclasts. As shown previously for calcium (Cao2+), the Sro2+-induced effect on mature osteoclasts is mediated by the Cao2+-sensing receptor, CaR, which in turn stimulates a phospholipase C-dependent signaling pathway and nuclear translocation of NF-kappaB. Unlike Cao2+, however, Sro2+-induced osteoclast apoptosis was shown to depend on PKCbetaII activation and to be independent of inositol 1,4,5-trisphosphate action. As a consequence of these differences in their intracellular signaling pathways, Sro2+ and Cao2+ in combination were shown to exert a greater effect on mature osteoclast apoptosis than did either divalent cation by itself. Altogether, our results show that Sro2+ acts through the CaR and induces osteoclast apoptosis through a signaling pathway similar to but different in certain respects from that of Cao2+. This difference in the respective signaling cascades enables Sro2+ to potentiate Cao2+-induced osteoclast apoptosis and vice versa. In this manner, it is conceivable that Sro2+ and Cao2+ act together to inhibit bone resorption in strontium ranelate-treated patients.  相似文献   
76.
The deletion of microtubule-associated protein stable tubule only polypeptide (STOP) leads to neuroanatomical, biochemical and severe behavioral alterations in mice, partly alleviated by antipsychotics. Therefore, STOP knockout (KO) mice have been proposed as a model of some schizophrenia-like symptoms. Preliminary data showed decreased brain serotonin (5-HT) tissue levels in STOP KO mice. As literature data demonstrate various interactions between microtubule-associated proteins and 5-HT, we characterized some features of the serotonergic neurotransmission in STOP KO mice. In the brainstem, mutant mice displayed higher tissue 5-HT levels and in vivo synthesis rate, together with marked increases in 5-HT transporter densities and 5-HT1A autoreceptor levels and electrophysiological sensitivity, without modification of the serotonergic soma number. Conversely, in projection areas, STOP KO mice exhibited lower 5-HT levels and in vivo synthesis rate, associated with severe decreases in 5-HT transporter densities, possibly related to reduced serotonergic terminals. Mutant mice also displayed a deficit of adult hippocampal neurogenesis, probably related to both STOP deletion and 5-HT depletion. Finally, STOP KO mice exhibited a reduced anxiety- and, probably, an increased helpness-status, that could be because of the strong imbalance of the serotonin neurotransmission between somas and terminals. Altogether, these data suggested that STOP deletion elicited peculiar 5-HT disconnectivity.  相似文献   
77.
Human Rad51 (HsRad51), a key element of the homologous recombination repair pathway, is related to the resistance of cancer cells to chemo- and radio-therapies. This protein is thus a good target for the development of anti-cancer treatments. We have searched for new inhibitors directed against HsRad51 using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach. We have selected three aptamers displaying strong effects on strand exchange activity. Analysis by circular dichroism shows that they are highly structured DNA molecules. Our results also show that they affect the first step of the strand exchange reaction by promoting the dissociation of DNA from the ATP/HsRad51/DNA complex. Moreover, these inhibitors bind only weakly to RecA, a prokaryotic ortholog of HsRad51. Both the specificity and the efficiency of their inhibition of recombinase activity offer an analytical tool based on molecular recognition and the prospect of developing new therapeutic agents.  相似文献   
78.
Copy number variants (CNVs) at chromosome 16p13.11 have been associated with a range of neurodevelopmental disorders including autism, ADHD, intellectual disability and schizophrenia. Significant sex differences in prevalence, course and severity have been described for a number of these conditions but the biological and environmental factors underlying such sex-specific features remain unclear. We tested the burden and the possible sex-biased effect of CNVs at 16p13.11 in a sample of 10,397 individuals with a range of neurodevelopmental conditions, clinically referred for array comparative genomic hybridisation (aCGH); cases were compared with 11,277 controls. In order to identify candidate phenotype-associated genes, we performed an interval-based analysis and investigated the presence of ohnologs at 16p13.11; finally, we searched the DECIPHER database for previously identified 16p13.11 copy number variants. In the clinical referral series, we identified 46 cases with CNVs of variable size at 16p13.11, including 28 duplications and 18 deletions. Patients were referred for various phenotypes, including developmental delay, autism, speech delay, learning difficulties, behavioural problems, epilepsy, microcephaly and physical dysmorphisms. CNVs at 16p13.11 were also present in 17 controls. Association analysis revealed an excess of CNVs in cases compared with controls (OR = 2.59; p = 0.0005), and a sex-biased effect, with a significant enrichment of CNVs only in the male subgroup of cases (OR = 5.62; p = 0.0002), but not in females (OR = 1.19, p = 0.673). The same pattern of results was also observed in the DECIPHER sample. Interval-based analysis showed a significant enrichment of case CNVs containing interval II (OR = 2.59; p = 0.0005), located in the 0.83 Mb genomic region between 15.49–16.32 Mb, and encompassing the four ohnologs NDE1, MYH11, ABCC1 and ABCC6. Our data confirm that duplications and deletions at 16p13.11 represent incompletely penetrant pathogenic mutations that predispose to a range of neurodevelopmental disorders, and suggest a sex-limited effect on the penetrance of the pathological phenotypes at the 16p13.11 locus.  相似文献   
79.
Microtubules are highly dynamic αβ-tubulin polymers. In vitro and in living cells, microtubules are most often cold- and nocodazole-sensitive. When present, the MAP6/STOP family of proteins protects microtubules from cold- and nocodazole-induced depolymerization but the molecular and structure determinants by which these proteins stabilize microtubules remain under debate. We show here that a short protein fragment from MAP6-N, which encompasses its Mn1 and Mn2 modules (MAP6(90–177)), recapitulates the function of the full-length MAP6-N protein toward microtubules, i.e. its ability to stabilize microtubules in vitro and in cultured cells in ice-cold conditions or in the presence of nocodazole. We further show for the first time, using biochemical assays and NMR spectroscopy, that these effects result from the binding of MAP6(90–177) to microtubules with a 1:1 MAP6(90–177):tubulin heterodimer stoichiometry. NMR data demonstrate that the binding of MAP6(90–177) to microtubules involve its two Mn modules but that a single one is also able to interact with microtubules in a closely similar manner. This suggests that the Mn modules represent each a full microtubule binding domain and that MAP6 proteins may stabilize microtubules by bridging tubulin heterodimers from adjacent protofilaments or within a protofilament. Finally, we demonstrate that Ca2+-calmodulin competes with microtubules for MAP6(90–177) binding and that the binding mode of MAP6(90–177) to microtubules and Ca2+-calmodulin involves a common stretch of amino acid residues on the MAP6(90–177) side. This result accounts for the regulation of microtubule stability in cold condition by Ca2+-calmodulin.  相似文献   
80.

Key message

Wheat low-molecular-weight-glutenin and α-gliadin were accumulated in the endoplasmic reticulum and formed protein body-like structures in tobacco cells, with the participation of BiP chaperone. Possible interactions between these prolamins were investigated.

Abstract

Wheat prolamins are the major proteins that accumulate in endosperm cells and are largely responsible for the unique biochemical properties of wheat products. They are accumulated in the endoplasmic reticulum (ER) where they form protein bodies (PBs) and are then transported to the storage vacuole where they form a protein matrix in the ripe seeds. Whereas previous studies have been carried out to determine the atypical trafficking pathway of prolamins, the mechanisms leading to ER retention and PB formation are still not clear. In this study, we examined the trafficking of a low-molecular-weight glutenin subunit (LMW-glutenin) and α-gliadin fused to fluorescent proteins expressed in tobacco cells. Through transient transformation in epidermal tobacco leaves, we demonstrated that both LMW-glutenin and α-gliadin were retained in the ER and formed mobile protein body-like structures (PBLS) that generally do not co-localise with Golgi bodies. An increased expression level of BiP in tobacco cells transformed with α-gliadin or LMW-glutenin was observed, suggesting the participation of this chaperone protein in the accumulation of wheat prolamins in tobacco cells. When stably expressed in BY-2 cells, LMW-glutenin fusion was retained longer in the ER before being exported to and degraded in the vacuole, compared with α-gliadin fusion, suggesting the involvement of intermolecular disulphide bonds in ER retention, but not in PBLS formation. Co-localisation experiments showed that gliadins and LMW-glutenin were found in the same PBLS with no particular distribution, which could be due to their ability to interact with each other as indicated by yeast two-hybrid assays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号