首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   556篇
  免费   59篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   3篇
  2016年   5篇
  2015年   11篇
  2014年   14篇
  2013年   28篇
  2012年   36篇
  2011年   39篇
  2010年   27篇
  2009年   26篇
  2008年   29篇
  2007年   36篇
  2006年   48篇
  2005年   23篇
  2004年   24篇
  2003年   29篇
  2002年   29篇
  2001年   13篇
  2000年   14篇
  1999年   18篇
  1998年   4篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   9篇
  1991年   6篇
  1990年   8篇
  1989年   7篇
  1988年   8篇
  1987年   4篇
  1986年   9篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   5篇
  1980年   10篇
  1979年   5篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1975年   6篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
排序方式: 共有615条查询结果,搜索用时 15 毫秒
21.
Endotoxins in commercial vaccines.   总被引:1,自引:1,他引:0       下载免费PDF全文
Twenty samples of commercial vaccines intended for administration to humans were assayed for the presence of bacterial endotoxins by using the Limulus amebocyte lysate test. Sixteen of the vaccines contained more than 0.1 ng of endotoxin per ml (which corresponds to 103 bacterial cell wall equivalents per ml in the undiluted vaccines). These results suggest that at some stage of preparation, the vaccines have contained varying amounts of gram-negative bacteria and may indicate the presence of other bacterial products as well. It might be useful to list the level of endotoxins, phage, and other contaminants on each vaccine lot to facilitate studies on any side effects of these contaminants. Selection of vaccine lots with the least endotoxin might reduce some of the adverse effects of vaccinations.  相似文献   
22.
Gene Targeting (GT) is the integration of an introduced vector into a specific chromosomal site, via homologous recombination. It is considered an effective tool for precise genome editing, with far-reaching implications in biological research and biotechnology, and is widely used in mice, with the potential of becoming routine in many species. Nevertheless, the epigenetic status of the targeted allele remains largely unexplored. Using GT-modified lines of the model plant Arabidopsis thaliana, we show that the DNA methylation profile of the targeted locus is changed following GT. This effect is non-directional as methylation can be either completely lost, maintained with minor alterations or show instability in the generations subsequent to GT. As DNA methylation is known to be involved in several cellular processes, GT-related alterations may result in unexpected or even unnoticed perturbations. Our analysis shows that GT may be used as a new tool for generating epialleles, for example, to study the role of gene body methylation. In addition, the analysis of DNA methylation at the targeted locus may be utilized to investigate the mechanism of GT, many aspects of which are still unknown.  相似文献   
23.
A large variety of motile bacterial species exhibit collective motions while inhabiting liquids or colonizing surfaces. These collective motions are often characterized by coherent dynamic clusters, where hundreds of cells move in correlated whirls and jets. Previously, all species that were known to form such motion had a rod-shaped structure, which enhances the order through steric and hydrodynamic interactions. Here we show that the spherical motile bacteria Serratia marcescens exhibit robust collective dynamics and correlated coherent motion while grown in suspensions. As cells migrate to the upper surface of a drop, they form a monolayer, and move collectively in whirls and jets. At all concentrations, the distribution of the bacterial speed was approximately Rayleigh with an average that depends on concentration in a non-monotonic way. Other dynamical parameters such as vorticity and correlation functions are also analyzed and compared to rod-shaped bacteria from the same strain. Our results demonstrate that self-propelled spherical objects do form complex ordered collective motion. This opens a door for a new perspective on the role of cell aspect ratio and alignment of cells with regards to collective motion in nature.  相似文献   
24.
Microbial communities in soils may change in accordance with distance, season, climate, soil texture and other environmental parameters. Microbial diversity patterns have been extensively surveyed in temperate regions, but few such studies attempted to address them with respect to spatial and temporal scales and their correlations to environmental factors, especially in arid ecosystems. In order to fill this gap on a regional scale, the molecular fingerprints and abundance of three taxonomic groups – Bacteria, α-Proteobacteria and Actinobacteria – were sampled from soils 0.5–100 km apart in arid, semi-arid, dry Mediterranean and shoreline Mediterranean regions in Israel. Additionally, on a local scale, the molecular fingerprints of three taxonomic groups – Bacteria, Archaea and Fungi – were sampled from soils 1 cm–500 m apart in the semi-arid region, in both summer and winter. Fingerprints of the Bacteria differentiated between all regions (P<0.02), while those of the α-Proteobacteria differentiated between some of the regions (0.01<P<0.09), and actinobacterial fingerprints were similar among all regions (P>0.05). Locally, fingerprints of archaea and fungi did not display distance-decay relationships (P>0.13), that is, the dissimilarity between communities did not increase with geographic distance. Neither was this phenomenon evident in bacterial samples in summer (P>0.24); in winter, however, differences between bacterial communities significantly increased as the geographic distances between them grew (P<0.01). Microbial community structures, as well as microbial abundance, were both significantly correlated to precipitation and soil characteristics: texture, organic matter and water content (R2>0.60, P<0.01). We conclude that on the whole, microbial biogeography in arid and semi-arid soils in Israel is determined more by specific environmental factors than geographic distances and spatial distribution patterns.  相似文献   
25.
Madagascar's endemic ground-dwelling leaf chameleons (Brookesiinae: Brookesia Gray, 1865 + Palleon Glaw, et al., Salamandra, 2013, 49, pp. 237–238) form the sister taxon to all other chameleons (i.e., the Chamaeleoninae). They possess a limited ability of color change, a rather dull coloration, and a nonprehensile tail assisting locomotion in the leaf litter on the forest floor. Most Brookesia species can readily be recognized by peculiar spiky dorsolateral projections (“Rückensäge”), which are caused by an aberrant vertebral structure and might function as body armor to prevent predation. In addition to a pronounced Rückensäge, the Antsingy leaf chameleon Brookesia perarmata (Angel, 1933) exhibits conspicuous, acuminate tubercle scales on the lateral flanks and extremities, thereby considerably enhancing the overall armored appearance. Such structures are exceptional within the Chamaeleonidae and despite an appreciable interest in the integument of chameleons in general, the morphology of these integumentary elements remains shrouded in mystery. Using various conventional and petrographic histological approaches combined with μCT-imaging, we reveal that the tubercle scales consist of osseous, multicusped cores that are embedded within the dermis. Based on this, they consequently can be interpreted as osteoderms, which to the best of our knowledge is the first record of such for the entire Chamaeleonidae and only the second one for the entire clade Iguania. The combination of certain aspects of tissue composition (especially the presence of large, interconnected, and marrow-filled cavities) together with the precise location within the dermis (being completely enveloped by the stratum superficiale), however, discriminate the osteoderms of B. perarmata from those known for all other lepidosaurs.  相似文献   
26.
Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized.  相似文献   
27.
A reproducible therapy model for advanced intracerebral B16 melanoma is reported. Implanted tumors (D0), suppressed by a single 15 Gy radiosurgical dose of 100 kVp X-rays (D8), were further suppressed by a single ip injection of a Treg-depleting mAb given 2 days prior to the initiation (D9) of four weekly then eight bi-monthly sc injections of GMCSF-transfected, mitotically disabled B16 cells. The trends of seven independent experiments were similar to the combined result: The median (days) [SD/total N] of survival went from 15[1.09/62] (no treatment control) to 35.8[8.8/58] (radiation therapy only) to 52.5[13.5/57] (radiation therapy plus immunotherapy). Within 2 weeks after immunization, tumors in mice receiving radiation therapy plus immunotherapy were significantly smaller than tumors in mice treated only with radiosurgery. Splenocytes and lymph node cells from immunized mice showed increased interferon γ production when cultured with syngeneic tumor cells. We suggest that our model will be useful for the development and testing of novel combination therapies for brain tumors.  相似文献   
28.
l-Carnitine is a naturally occurring substance required in mammalian energy metabolism that functions by facilitating long-chain fatty acid entry into cellular mitochondria, thereby delivering substrate for oxidation and subsequent energy production. It has been purposed that l-carnitine may improve and preserve cognitive performance, and may lead to better cognitive aging through the life span, and several controlled human clinical trials with l-carnitine support the hypothesis that this substance has the ability to improve cognitive function. We further hypothesized that, since l-carnitine is an important co-factor of mammalian mitochondrial energy metabolism, acute administration of l-carnitine to human tissue culture cells should result in detectable increases in mitochondrial function. Cultures of SH-SY-5Y human neuroblastoma and 1321N1 human astrocytoma cells grown in 96-well cell culture plates were acutely administered l-carnitine hydrochloride, and then, mitochondrial function was assayed using the colorimetric 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt cell assay kit in a VERSAmax tunable microplate reader. Significant increases in mitochondrial function were observed when human neuroblastoma or human astrocytoma cells were exposed to 100 nM (20 μg l-carnitine hydrochloride/L) to 100 μM (20 mg l-carnitine hydrochloride/L) concentrations of l-carnitine hydrochloride in comparison to unexposed cells, whereas no significant positive effects were observed at lower or higher concentrations of l-carnitine hydrochloride. The results of the present study provide insights for how l-carnitine therapy may significantly improve human neuronal function, but we recommend that future studies further explore different derivatives of l-carnitine compounds in different in vitro cell-based systems using different markers of mitochondrial function.  相似文献   
29.
30.
Mutations in Parkin are responsible for a large percentage of autosomal recessive juvenile parkinsonism cases. Parkin displays ubiquitin-ligase activity and protects against cell death promoted by several insults. Therefore, regulation of Parkin activities is important for understanding the dopaminergic cell death observed in Parkinson disease. We now report that cyclin-dependent kinase 5 (Cdk5) phosphorylates Parkin both in vitro and in vivo. We found that highly specific Cdk5 inhibitors and a dominant negative Cdk5 construct inhibited Parkin phosphorylation, suggesting that a significant portion of Parkin is phosphorylated by Cdk5. Parkin interacts with Cdk5 as observed by co-immunoprecipitation experiments of transfected cells and rat brains. Phosphorylation by Cdk5 decreased the auto-ubiquitylation of Parkin both in vitro and in vivo. We identified Ser-131 located at the linker region of Parkin as the major Cdk5 phosphorylation site. The Cdk5 phosphorylation-deficient S131A Parkin mutant displayed a higher auto-ubiquitylation level and increased ubiquitylation activity toward its substrates synphilin-1 and p38. Additionally, the S131A Parkin mutant more significantly accumulated into inclusions in human dopaminergic cells when compared with the wild-type Parkin. Furthermore, S131A Parkin mutant increased the formation of synphilin-1/alpha-synuclein inclusions, suggesting that the levels of Parkin phosphorylation and ubiquitylation may modulate the formation of inclusion bodies relevant to the disease. The data indicate that Cdk5 is a new regulator of the Parkin ubiquitin-ligase activity and modulates its ability to accumulate into and modify inclusions. Phosphorylation by Cdk5 may contribute to the accumulation of toxic Parkin substrates and decrease the ability of dopaminergic cells to cope with toxic insults in Parkinson disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号