首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   9篇
  2022年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   11篇
  2005年   10篇
  2004年   6篇
  2003年   10篇
  2002年   5篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1975年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
51.
In periodontitis, polymorphonuclear leucocytes (PMNs) are activated. They entrap and eliminate pathogens by releasing neutrophil extracellular traps (NETs). Abnormal NET degradation is part of a pro-inflammatory status, affecting co-morbidities such as cardiovascular disease. We aimed to investigate the ex vivo NET degradation capacity of plasma from periodontitis patients compared to controls (part 1) and to quantify NET degradation before and after periodontal therapy (part 2). Fresh NETs were obtained by stimulating blood-derived PMNs with phorbol 12-myristate 13-acetate. Plasma samples from untreated periodontitis patients and controls were incubated for 3 h onto freshly generated NETs (part 1). Similarly, for part 2, NET degradation was studied for 91 patients before and 3, 6 and 12 mo after non-surgical periodontal therapy with and without adjunctive systemic antibiotics. Finally, NET degradation was fluorospectrometrically quantified. NET degradation levels did not differ between periodontitis patients and controls, irrespective of subject-related background characteristics. NET degradation significantly increased from 65.6 ± 1.7% before periodontal treatment to 75.7 ± 1.2% at 3 mo post periodontal therapy, and this improvement was maintained at 6 and 12 mo, irrespective of systemic usage of antibiotics. Improved NET degradation after periodontitis treatment is another systemic biomarker reflecting a decreased pro-inflammatory status, which also contributes to an improved cardiovascular condition.  相似文献   
52.
Through processing peptide and protein C termini, carboxypeptidases participate in the regulation of various biological processes. Few tools are however available to study the substrate specificity profiles of these enzymes. We developed a proteome-derived peptide library approach to study the substrate preferences of carboxypeptidases. Our COFRADIC-based approach takes advantage of the distinct chromatographic behavior of intact peptides and the proteolytic products generated by the action of carboxypeptidases, to enrich the latter and facilitate its MS-based identification. Two different peptide libraries, generated either by chymotrypsin or by metalloendopeptidase Lys-N, were used to determine the substrate preferences of human metallocarboxypeptidases A1 (hCPA1), A2 (hCPA2), and A4 (hCPA4). In addition, our approach allowed us to delineate the substrate specificity profile of mouse mast cell carboxypeptidase (MC-CPA or mCPA3), a carboxypeptidase suggested to function in innate immune responses regulation and mast cell granule homeostasis, but which thus far lacked a detailed analysis of its substrate preferences. mCPA3 was here shown to preferentially remove bulky aromatic amino acids, similar to hCPA2. This was also shown by a hierarchical cluster analysis, grouping hCPA1 close to hCPA4 in terms of its P1 primed substrate specificity, whereas hCPA2 and mCPA3 cluster separately. The specificity profile of mCPA3 may further aid to elucidate the function of this mast cell carboxypeptidase and its biological substrate repertoire. Finally, we used this approach to evaluate the substrate preferences of prolylcarboxypeptidase, a serine carboxypeptidase shown to cleave C-terminal amino acids linked to proline and alanine.Carboxypeptidases (CPs)1 catalyze the release of C-terminal amino acids from proteins and peptides (1, 2), and are grouped according to the chemical nature of their catalytic site. Accordingly, there are three types of carboxypeptidases: metallocarboxypeptidases (MCPs), serine carboxypeptidases (SCPs), and cysteine carboxypeptidases. CPs can also be classified based on their substrate specificity; CPs that prefer hydrophobic C-terminal amino acids (A-like MCPs or C-type SCPs), those that cleave C-terminal basic residues (B-like MCPs or D-type SCPs), those that recognize substrates with C-terminal aspartate or glutamate residues, and other CPs that display a broad substrate specificity (3, 4).CPs were initially considered as degrading enzymes associated with protein catabolism. However, accumulating evidence demonstrates that some CPs are (more) selective and play key roles in controlling various biological processes (2, 5). Angiotensin-converting enzyme 2 (ACE2), a MCP homolog of angiotensin-converting enzyme (ACE) that belongs to the M2 family of proteolytic enzymes according to the MEROPS classification, is a potent negative regulator of the renin-angiotensin system and plays a key role in maintaining blood pressure homeostasis. ACE2 cleaves off a C-terminal phenylalanine thereby converting angiotensin II to the heptapeptide angiotensin-(1–7), a peptide hormone that opposes the vasoconstrictor and proliferative actions of angiotensin II (6). Cathepsin A, a lysosomal SCP, is also believed to function in blood pressure regulation, in this case through its action against vasoactive peptides like endothelin-1 or angiotensin I (7). Human carboxypeptidase A4 (hCPA4), a MCP from the M14 family, presumably functions in neuropeptide processing and was linked to prostate cancer aggressiveness (8).Besides their biological importance, CPs are also exploited in biotechnological and biomedical applications. Carboxypeptidase B (CPB) for instance, is a M14 MCP used for manufacturing recombinant human insulin. Recombinant preproinsulin is enzymatically processed in vitro by pancreatic trypsin and carboxypeptidase B to generate the active insulin form (9). Further, carboxypeptidase digestion has been used for determining the C-terminal sequence of purified proteins or peptides. The most popular CPs being the SCPs C, P and Y (10). In addition, the food industry uses different SCPs to process protein products to reduce their bitter taste (1113).Identifying a protease''s specificity and its natural substrates provides key information to understanding the molecular role of proteases (14, 15). Moreover, determination of a protease''s specificity also provides a framework for the design of selective probes and potent and selective inhibitors (16). Although several factors impact on substrate selection, a key factor is the complementarity of a protease binding site with specific substrate side-chains.Several approaches for determining protease substrate specificity based on peptide libraries have been developed, including substrate phage/bacterial display libraries, peptide microarrays, positional-scanning peptide libraries, mixture-based peptide libraries, and proteome-derived peptide libraries (17). The latter were more recently introduced by Schilling et al. (18) and make use of natural peptide libraries generated by proteolysis of a model proteome using a specific protease (e.g. trypsin, chymotrypsin). Such peptide libraries are subsequently digested by a protease of interest and the resulting neo-N-terminal products are enriched and identified following LC-MS/MS analyses. This technology allows profiling of the substrate specificity of endoproteases and aminopeptidases. However, viewing the fact that only C-terminal cleavage products are isolated by this method, it cannot be used to study CPs because their resulting primed site cleavage products are typically only a single amino acid and thus are not compatible for subsequent LC-MS/MS based identification.Currently, two different peptide-centric degradomic approaches (19) are available for CP substrate profiling. Recently, a multiplex substrate profiling by mass spectrometry (MSP-MS) method, which applies mass spectrometry-based peptide sequencing to detect cleavage products in a mixture of synthetic peptides, was used to determine the substrate preferences of prolylcarboxypeptidase (PRCP) (20). Further, peptidomic studies have made use of natural peptides isolates from cells and tissues as natural substrate pools to test cleavages by CPs (8, 21, 22). In this list of degradomic approaches, we can additionally consider the protein-centric positional proteomics approaches; C-terminal COFRADIC (23) and C-TAILS (24), capable of identifying in vivo CP proteolytic events, based on the identification of protein neo-C termini.We here exploited the COFRADIC technology (25) and developed a proteome-derived carboxypeptidase peptide library assay that was used to determine the substrate specificity profile of 5 selected human carboxypeptidases: 4 enzymes belonging to the MCP family and PRCP, which is a SCP. Given that MCPs are the most studied and thus a highly relevant group of CPs, the human metallocarboxypeptidases A4 (hCPA4), A2 (hCPA2), and A1 (hCPA1) were used as model CPs. Two different peptide libraries, created using chymotrypsin or metalloendopeptidase Lys-N as peptide library generating proteases, were used to extensively profile the proteolytic substrate specificities of these MCPs. In addition, we profiled the substrate preferences for the yet uncharacterized mast cell carboxypeptidase (MC-CPA or mCPA3). Besides, using Lys-N proteome-derived peptide libraries and making use of shorter protease incubation times, information on sequential cleavages of these enzymes could be obtained. Finally, this assay was additionally applied to PRCP, a pharmaceutically relevant SCP that differs from MCPs in its enzymatic characteristics, further demonstrating the more universal applicability of our method.  相似文献   
53.
Tick-derived protease inhibitor (TdPI) is a tight-binding Kunitz-related inhibitor of human tryptase β with a unique structure and disulfide-bond pattern. Here we analyzed its oxidative folding and reductive unfolding by chromatographic and disulfide analyses of acid-trapped intermediates. TdPI folds through a stepwise generation of heterogeneous populations of one-disulfide, two-disulfide, and three-disulfide intermediates, with a major accumulation of the nonnative three-disulfide species IIIa. The rate-limiting step of the process is disulfide reshuffling within the three-disulfide population towards a productive intermediate that oxidizes directly into the native four-disulfide protein. TdPI unfolds through a major accumulation of the native three-disulfide species IIIb and the subsequent formation of two-disulfide and one-disulfide intermediates. NMR characterization of the acid-trapped and further isolated IIIa intermediate revealed a highly disordered conformation that is maintained by the presence of the disulfide bonds. Conversely, the NMR structure of IIIb showed a native-like conformation, with three native disulfide bonds and increased flexibility only around the two free cysteines, thus providing a molecular basis for its role as a productive intermediate. Comparison of TdPI with a shortened variant lacking the flexible prehead and posthead segments revealed that these regions do not contribute to the protein conformational stability or the inhibition of trypsin but are important for both the initial steps of the folding reaction and the inhibition of tryptase β. Taken together, the results provide insights into the mechanism of oxidative folding of Kunitz inhibitors and pave the way for the design of TdPI variants with improved properties for biomedical applications.  相似文献   
54.
55.
Pulmonary acariasis is a sporadic, incidental finding in colony‐raised rhesus macaques (Macaca mulatta). Prophylactic treatment in indoor‐raised and indoor‐housed macaques is not routine due to low prevalence, lack of clinical significance, and potential risk of toxicosis. This case is an unusually severe infestation of Pneumonyssus simicola in an indoor‐housed rhesus macaque, which ultimately resulted in this animal's death.  相似文献   
56.
The three-dimensional crystal structure of duck carboxypeptidase D domain II has been solved in a complex with the peptidomimetic inhibitor, guanidinoethylmercaptosuccinic acid, occupying the specificity pocket. This structure allows a clear definition of the substrate binding sites and the substrate funnel-like access. The structure of domain II is the only one available from the regulatory carboxypeptidase family and can be used as a general template for its members. Here, it has been used to model the structures of domains I and III from the former protein and of human carboxypeptidase E. The models obtained show that the overall topology is similar in all cases, the main differences being local and because of insertions in non-regular loops. In both carboxypeptidase D domain I and carboxypeptidase E slightly different shapes of the access to the active site are predicted, implying some kind of structural selection of protein or peptide substrates. Furthermore, emplacement of the inhibitor structure in the active site of the constructed models showed that the inhibitor fits very well in all of them and that the relevant interactions observed with domain II are conserved in domain I and carboxypeptidase E but not in the non-active domain III because of the absence of catalytically indispensable residues in the latter protein. However, in domain III some of the residues potentially involved in substrate binding are well preserved, together with others of unknown roles, which also are highly conserved among all carboxypeptidases. These observations, taken together with others, suggest that domain III might play a role in the binding and presentation of proteins or peptide substrates, such as the pre-S domain of the large envelope protein of duck hepatitis B virus.  相似文献   
57.
A sensitive high-performance liquid chromatography-tandem mass spectrometry assay for thiocoraline, an anti-tumor depsipeptide, in mouse plasma is described. Echinomycin, a quinoxaline peptide, was used as an internal standard. Thiocoraline was recovered from the mouse plasma using protein precipitation with acetonitrile and followed by solid-phase extraction of the supernatant. The mobile phase consisted of methanol (0.1% formic acid)-water (0.1% formic acid) (90:10, v/v). The analytical column was a YMC C(18). The standard curve was linear from 0.1 to 50 ng/ml (R(2)>0.99). The lower limit of quantitation was 0.1 ng/ml. The assay was specific based on the multiple reaction monitoring transitions at m/z 1157-->215 and m/z 1101-->243 for thiocoraline and the internal standard, echinomycin, respectively. The mean intra- and inter-day assay accuracies remained below 5 and 12%, respectively, for all calibration standards and quality control (QC) samples. The intra- and inter-day assay precisions were less than 11.4 and 9.5% for all QC levels, respectively. The utility of the assay was demonstrated by a pharmacokinetic study of i.v. (bolus) thiocoraline on CD-1 mice. Thiocoraline was stable in mouse plasma in an ice-water bath for 6 h and for three freeze-thaw cycles. The reconstituted thiocoraline after extraction and drying sample process was stable in the autosampler for over 24 h. The assay was able to quantify thiocoraline in plasma up to 48 h following dose. Pharmacokinetic analysis showed that thiocoraline has distinct pharmacokinetic profiling when dosed in different formulation solutions. The assay is currently used to measure thiocoraline plasma concentrations in support of a project to develop a suitable formulation with a desirable pharmacokinetic profile.  相似文献   
58.
Immune function is altered in stressful situations, including space flight. This may result in increased risk of infection. Antiorthostatic suspension has been used to study the effects of space flight-like conditions on immunity. The mechanisms of promoting infection in stressful situations have not been defined, but catecholamines could play a role. In the present study gram negative bacteria grown with catecholamines showed enhanced bacterial growth compared to controls. Additionally, antiorthostatically suspended mice infected with Klebsiella pneumoniae showed decreased survival compared to restrained or normally caged controls. Therefore, stress-induced enhanced bacterial growth and immunosuppression could play a role in suspension-induced enhanced mortality due to infection.  相似文献   
59.
The unfolding and denaturation curves of leech carboxypeptidase inhibitor (LCI) were elucidated using the technique of disulfide scrambling. In the presence of thiol initiator and denaturant, the native LCI denatures by shuffling its native disulfide bonds and transforms into a mixture of scrambled species. 9 of 104 possible scrambled isomers of LCI, amounting to 90% of total denatured LCI, can be distinguished. The denaturation curve that plots the fraction of native LCI converted into scrambled isomers upon increasing concentrations of denaturant shows that the concentration of guanidine thiocyanate and guanidine hydrochloride required to reach 50% of denaturation is 2.4 and 3.6 m, respectively. In contrast, native LCI is resistant to urea denaturation even at high concentration (8 m). The LCI unfolding pathway was defined based on the evolution of the relative concentration of scrambled isoforms of LCI upon denaturation. Two populations of scrambled species suffer variations along the unfolding pathway. One accumulates as intermediates under strong denaturing conditions and corresponds to open or relaxed structures, among which the beads-form isomer is found. The other population shows an inverse correlation between their relative abundances and the denaturing conditions and should have another kind of non-native structure that is more compact than the unfolded state. The rate constants of unfolding of LCI are low when compared with other disulfide-containing proteins. Overall, the results presented in this study show that LCI, a molecule with potential biotechnological applications, has slow kinetics of unfolding and is highly stable.  相似文献   
60.
Amino acid homology searches of the human genome revealed three members of the metallocarboxypeptidase (metallo-CP) family that had not been described in the literature in addition to the 14 known genes. One of these three, named CPA5, is present in a gene cluster with CPA1, CPA2, and CPA4 on chromosome 7. The cDNA encoding a mouse homolog of human CPA5 was isolated from a testis library and sequenced. The deduced amino acid sequence of human CPA5 has highest amino acid sequence identity (60%) to CPA1. Modeling analysis shows the overall structure to be very similar to that of other members of the A/B subfamily of metallocarboxypeptidases. The active site of CPA5 is predicted to cleave substrates with C-terminal hydrophobic residues, as do CPA1, -2, and -3. Using Northern blot analysis, CPA5 mRNA is detected in testis but not in kidney, liver, brain, or lung. In situ hybridization analysis shows that CPA5 is localized to testis germ cells. Mouse pro-CPA5 protein expressed in Sf9 cells using the baculovirus system was retained in the particulate fraction of the cells and was not secreted into the media. Pro-CPA5 was not enzymatically active toward standard CPA substrates, but after incubation with prohormone convertase 4 the resulting protein was able to cleave furylacryloyl-Gly-Leu, with 3-4-fold greater activity at pH 7.4 than at 5.6. Two additional members of the human CP gene family were also studied. Modeling analysis indicates that both contain the necessary amino acids required for enzymatic activity. The CP on chromosome 8 is predicted to have a CPA-like specificity for C-terminal hydrophobic residues and was named CPA6. The CP on chromosome 2 is predicted to cleave substrates with C-terminal acidic residues and was named CPO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号