首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   747篇
  免费   65篇
  国内免费   1篇
  2021年   16篇
  2018年   16篇
  2017年   9篇
  2016年   14篇
  2015年   16篇
  2014年   16篇
  2013年   28篇
  2012年   33篇
  2011年   40篇
  2010年   39篇
  2009年   22篇
  2008年   47篇
  2007年   31篇
  2006年   21篇
  2005年   26篇
  2004年   31篇
  2003年   30篇
  2002年   17篇
  2001年   11篇
  2000年   16篇
  1999年   8篇
  1998年   10篇
  1997年   8篇
  1996年   9篇
  1995年   11篇
  1993年   5篇
  1992年   11篇
  1991年   5篇
  1990年   10篇
  1989年   7篇
  1987年   8篇
  1985年   7篇
  1984年   12篇
  1983年   10篇
  1982年   11篇
  1980年   8篇
  1979年   5篇
  1978年   10篇
  1976年   5篇
  1975年   7篇
  1974年   8篇
  1972年   8篇
  1971年   6篇
  1969年   7篇
  1959年   5篇
  1957年   6篇
  1951年   5篇
  1945年   7篇
  1939年   6篇
  1937年   5篇
排序方式: 共有813条查询结果,搜索用时 15 毫秒
71.
The role of chromatic and achromatic signals for fruit detection by birds   总被引:3,自引:0,他引:3  
Fruit color changes during ripening are typically viewed asan adaptation to increase signal efficacy to seed dispersers.Plants can increase signal efficacy by enhancing chromatic (wavelengthrelated) and/or achromatic (intensity related) contrasts betweenfruit and background. To assess how these contrasts determinethe detectability of fruit signals, we conducted 2 experimentswith free-flying crows (Corvus ossifragus) under seminaturalconditions in a 2025 m2 aviary. Crows searched first for artificialred and black fruits and detected red fruits from a larger distance.Because artificial red fruits had higher chromatic and lowerachromatic contrasts against foliage than artificial black fruits,crows apparently prioritized chromatic contrasts. Thus, thecommon change in fruit color from red to black during ripeningdoes not increase signal efficacy to crows. In a second trial,crows searched for UV-reflecting and black blueberries (Vaccinummyrtillus) against backgrounds of foliage and sand. Againstfoliage, UV-reflecting berries had higher chromatic and achromaticcontrasts than black berries, and crows detected them from alarger distance. Against sand, UV-reflecting berries had lowachromatic contrasts and black berries low chromatic contrasts.Crows detected both fruit types equally, suggesting that theyused chromatic contrasts to detect UV-reflecting berries andachromatic contrasts to detect black berries. Birds prioritizedchromatic contrasts when searching for artificial red fruitsin foliage but not when searching for blueberries on sand. Wesuggest that the relative importance of chromatic and achromaticcontrasts is contingent on the chromatic and achromatic varianceof the background. Models of signal perception can be improvedby incorporating background-specific effects.  相似文献   
72.
Friend virus induces an erythroleukemia in susceptible mice that is initiated by the interaction of the Friend virus-encoded glycoprotein gp55 with the erythropoietin (Epo) receptor and the product of the host Fv2 gene, a naturally occurring truncated form of the Stk receptor tyrosine kinase (Sf-Stk). We have previously demonstrated that the activation of Sf-Stk, recruitment of a Grb2/Gab2/Stat3 signaling complex, and induction of Pu.1 expression by Stat3 are required for the development of the early stage of Friend disease both in vitro and in vivo. Here we demonstrate that the interaction of gp55 with Sf-Stk is dependent on cysteine residues in the ecotropic domain of gp55 and the extracellular domain of Sf-Stk. Point mutation of these cysteine residues or deletion of these domains inhibits the ability of gp55 to interact with Sf-Stk, resulting in the inability of these proteins to promote the Epo-independent growth of erythroid progenitor cells. We also demonstrate that the interaction of gp55 with Sf-Stk does not promote dimerization of Sf-Stk but results in enhanced phosphorylation of Sf-Stk and the relocalization of Sf-Stk from the cytosol to the plasma membrane. Finally, we demonstrate that a constitutively active form of Sf-Stk (Sf-StkM330T), as well as its human counterpart, Sf-Ron, promotes Epo-independent colony formation in the absence of gp55 and that this response is also dependent on the cysteines in the extracellular domains of Sf-StkM330T and Sf-Ron. These data suggest that the cysteines in the extracellular domains of Sf-Stk and Sf-Ron may also mediate the interaction of these truncated receptors with other cellular factors that regulate their ability to promote cytokine-independent growth.Since Friend disease was first reported in 1957 (19), the acute erythroleukemia induced by the various strains of Friend virus have provided an excellent model to study multistage carcinogenesis (5). In the first stage, the virus infects erythroid progenitor cells and a viral glycoprotein, gp55, interacts with both the erythropoietin receptor (EpoR) and a naturally occurring truncated form of the stem cell-derived tyrosine kinase (Stk), Sf-Stk, resulting in the Epo-independent (Epoind) expansion of erythroid progenitor cells. The late stage of erythroleukemia in Friend disease is marked by inactivation of the p53 locus (6, 28, 38, 39, 51) and proviral integration into the Spi-1 locus (36, 43, 44), resulting in enhanced expression of Pu.1, which causes a block in erythroid differentiation and promoting the onset of acute erythroleukemia.Friend virus is a complex of two viruses, the spleen focus-forming virus (SFFV), which is a replication-defective C-type retrovirus, and the ecotropic Friend murine leukemia virus (F-MuLV). SFFV is responsible for the rapid splenomegaly and acute erythroleukemia induced by Friend virus infection (7, 64, 65, 67), while F-MuLV provides helper function and can be substituted for by other murine leukemia viruses (35). Specifically, the glycoprotein gp55, encoded by the SFFV env gene, acts as the transforming viral oncoprotein (2, 65).Several loci in the mouse genome that control Friend virus susceptibility have been identified. Fv1, Fv3, and Fv4 affect the ability of Friend virus to infect early erythroid progenitor cells. The Fv1 gene product inhibits Friend virus infection by interacting with the viral capsid protein (60). The Fv3 gene encodes cytidine deaminase Apobec3, which broadly inhibits retrovirus infection (42, 53, 57). The Fv4 gene product affects viral binding by competing for receptors on the cell membrane (59). Another set of genes, W, Sl, f, and Fv2, are required for the development or expansion of infected progenitor cells. Our previous work demonstrated that W, Sl, and f, which encode the kit receptor, its ligand SCF, and Smad5, respectively, also play key roles in the BMP4-dependent stress erythropoiesis pathway(46, 47, 55). Analysis of those mutants showed that Friend virus activates this pathway, leading to acute amplification of stress progenitors, which are targets of Friend virus in the spleen, and resulting in rapid onset of disease.The Friend virus susceptibility gene Fv2 encodes the stem cell-derived tyrosine kinase (Stk) receptor (48). A naturally occurring N-terminally truncated form of Stk, short-form Stk (Sf-Stk), is required for Friend virus susceptibility. Fv2r/r mice, including C57BL/6, lack expression of Sf-Stk and are resistant to Friend virus infection, while full-length Stk expression is unaffected in these mice. An internal promoter within the Stk locus drives Sf-Stk expression, and Fv2r/r mice harbor mutations in the internal promoter. Sf-Stk lacks the N-terminal ligand binding domain of full-length Stk but retains the transmembrane and tyrosine kinase domains. In vitro and in vivo expression of Sf-Stk in C57BL/6 bone marrow cells has been shown to confer Friend virus susceptibility to Fv2r/r mice (18).Sf-Stk covalently interacts with gp55, resulting in constitutive activation of Sf-Stk (41). However, the mechanism by which this occurs is currently unknown. Here, we identify cysteines in the extracellular domains of Sf-Stk and gp55 that mediate this interaction. Furthermore, we demonstrate that while the association with gp55 is not required for the dimerization of Sf-Stk, the interaction of gp55 with Sf-Stk promotes tyrosine phosphorylation of Sf-Stk. In addition, while the extracellular cysteines in Sf-Stk promote retention of Sf-Stk in the cytoplasm in the absence of gp55, the interaction of Sf-Stk with gp55 through these cysteines results in enhanced cell surface localization of Sf-Stk. These changes in receptor activation and subcellular localization mediate the ability of Sf-Stk to induce gene expression and promote the Epoind growth of primary erythroblasts.  相似文献   
73.
74.
Patny A  Desai PV  Avery MA 《Proteins》2006,65(4):824-842
Angiotensin II type 1 (AT(1)) receptor belongs to the super-family of G-protein-coupled receptors, and antagonists of the AT(1) receptor are effectively used in the treatment of hypertension. To understand the molecular interactions of these antagonists, such as losartan and telmisartan, with the AT(1) receptor, a homology model of the human AT(1) (hAT(1)) receptor with all connecting loops was constructed from the 2.6 A resolution crystal structure (PDB i.d., 1L9H) of bovine rhodopsin. The initial model generated by MODELLER was subjected to a stepwise ligand-supported model refinement. This protocol involved initial docking of non-peptide AT(1) antagonists in the putative binding site, followed by several rounds of iterative energy minimizations and molecular dynamics simulations. The final model was validated based on its correlation with several structure-activity relationships and site-directed mutagenesis data. The final model was also found to be in agreement with a previously reported AT(1) antagonist pharmacophore model. Docking studies were performed for a series of non-peptide AT(1) receptor antagonists in the active site of the final hAT(1) receptor model. The docking was able to identify key molecular interactions for all the AT(1) antagonists studied. Reasonable correlation was observed between the interaction energy values and the corresponding binding affinities of these ligands, providing further validation for the model. In addition, an extensive unrestrained molecular dynamics simulation showed that the docking-derived bound pose of telmisartan is energetically stable. Knowledge gained from the present studies can be used in structure-based drug design for developing novel ligands for the AT(1) receptor.  相似文献   
75.
X-linked lymphoproliferative disease (XLP) is a severe immunodeficiency associated with a marked reduction in circulating memory B cells. Our investigation of the B cell compartment of XLP patients revealed an increase in the frequency of a population of B cells distinct from those previously defined. This population displayed increased expression of CD10, CD24, and CD38, indicating that it could consist of circulating immature/transitional B cells. Supporting this possibility, CD10+CD24highCD38high B cells displayed other immature characteristics, including unmutated Ig V genes and elevated levels of surface IgM; they also lacked expression of Bcl-2 and a panel of activation molecules. The capacity of CD24highCD38high B cells to proliferate, secrete Ig, and migrate in vitro was greatly reduced compared with mature B cell populations. Moreover, CD24highCD38high B cells were increased in the peripheral blood of neonates, patients with common variable immunodeficiency, and patients recovering from hemopoietic stem cell transplant. Thus, an expansion of functionally immature B cells may contribute to the humoral immunodeficient state that is characteristic of neonates, as well as patients with XLP or common variable immunodeficiency, and those recovering from a stem cell transplant. Further investigation of transitional B cells will improve our understanding of human B cell development and how alterations to this process may precipitate immunodeficiency or autoimmunity.  相似文献   
76.
Although liver fatty acid binding protein (L-FABP) is postulated to influence cholesterol homeostasis, the physiological significance of this hypothesis remains to be resolved. This issue was addressed by examining the response of young (7 wk) female mice to L-FABP gene ablation and a cholesterol-rich diet. In control-fed mice, L-FABP gene ablation alone induced hepatic cholesterol accumulation (2.6-fold), increased bile acid levels, and increased body weight gain (primarily as fat tissue mass). In cholesterol-fed mice, L-FABP gene ablation further enhanced the hepatic accumulation of cholesterol (especially cholesterol ester, 12-fold) and potentiated the effects of dietary cholesterol on increased body weight gain, again mainly as fat tissue mass. However, in contrast to the effects of L-FABP gene ablation in control-fed mice, biliary levels of bile acids (as well as cholesterol and phospholipids) were reduced. These phenotypic alterations were not associated with differences in food intake. In conclusion, it was shown for the first time that L-FABP altered cholesterol metabolism and the response of female mice to dietary cholesterol. While the biliary and lipid phenotype of female wild-type L-FABP+/+ mice was sensitive to dietary cholesterol, L-FABP gene ablation dramatically enhanced many of the effects of dietary cholesterol to greatly induce hepatic cholesterol (primarily cholesterol ester) and triacylglycerol accumulation as well as to potentiate body weight gain (primarily as fat tissue mass). Taken together, these data support the hypothesis that L-FABP is involved in the physiological regulation of cholesterol metabolism, body weight gain, and obesity.  相似文献   
77.
78.
Eukaryotic cells contain dozens, perhaps hundreds, of iron-dependent proteins, which perform critical functions in nearly every major cellular process. Nutritional iron is frequently available to cells in only limited amounts; thus, unicellular and higher eukaryotes have evolved mechanisms to cope with iron scarcity. These mechanisms have been studied at the molecular level in the model eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe, as well as in some pathogenic fungi. Each of these fungal species exhibits metabolic adaptations to iron deficiency that serve to reduce the cell's reliance on iron. However, the regulatory mechanisms that accomplish these adaptations differ greatly between fungal species. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   
79.
A laboratory bioassay was developed to evaluate strains of Isaria fumosorosea Wize, against Diaphorina citri. Up to 100% of adult psyllids were killed at concentrations between 106 and 107 blastospores/ml after 12 days, with derived LC50 values (at 7 days post treatment) between 1.4 × 105 and 2.0 × 106 blastospores/ml for strains ARSEF 3581, FE 9901 and Apopka-97. A significantly higher value (1.5 × 107) was obtained with a conidial formulation of Apopka-97. Average survival times were dosage dependent, i.e. between 10.2 days at 103 blastospores/ml and 3.5 days at 108 blastospores/ml. Rates of mycosis were also dosage dependent, with up to 100% sporulation on cadavers at 108 blastospores/ml but declining at lower concentrations. The Apopka-97 strain (commercially available as PFR-97) was tested against established D. citri infestations in potted citrus in greenhouse cages. Treatments at label rates reduced psyllid populations by approximately 50% over 3 weeks. The combination of PFR-97 with emulsifiable oils (0.25% v/v) did not increase psyllid mortality compared with either agent alone. Imidacloprid applied as a drench killed 100% of psyllids within 3 weeks. Subsequent greenhouse tests during humid conditions were hampered by natural dissemination of I. fumosorosea to untreated psyllids, suggesting that this fungus is spread by air movement and may be highly effective under very humid conditions. In later tests, a Cladosporium sp. rapidly colonised psyllid cadavers and leaf surfaces, but was not pathogenic in laboratory tests. Our studies confirm the potential of I. fumosorosea to be used in IPM strategies for D. citri that rely on other tactics, such as insecticidal oils and native or introduced biological control agents.  相似文献   
80.
Tatters AO  Fu FX  Hutchins DA 《PloS one》2012,7(2):e32116
Anthropogenic CO(2) is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO(2) concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO(2) levels (765 ppm) and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm) or pre-industrial (200 ppm) CO(2) conditions. Cellular Si:C ratios decrease with increasing CO(2), in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and 'carbon fertilization' of the coastal ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号