首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2288篇
  免费   237篇
  国内免费   1篇
  2022年   22篇
  2021年   55篇
  2020年   25篇
  2019年   33篇
  2018年   46篇
  2017年   41篇
  2016年   53篇
  2015年   82篇
  2014年   95篇
  2013年   139篇
  2012年   134篇
  2011年   127篇
  2010年   73篇
  2009年   79篇
  2008年   96篇
  2007年   85篇
  2006年   72篇
  2005年   98篇
  2004年   91篇
  2003年   75篇
  2002年   77篇
  2001年   44篇
  2000年   49篇
  1999年   48篇
  1998年   47篇
  1997年   38篇
  1996年   26篇
  1995年   30篇
  1994年   28篇
  1993年   28篇
  1992年   32篇
  1991年   35篇
  1990年   38篇
  1989年   26篇
  1988年   24篇
  1987年   30篇
  1986年   23篇
  1985年   19篇
  1984年   16篇
  1983年   17篇
  1982年   18篇
  1981年   17篇
  1979年   18篇
  1978年   20篇
  1977年   17篇
  1973年   15篇
  1971年   15篇
  1969年   14篇
  1968年   15篇
  1967年   16篇
排序方式: 共有2526条查询结果,搜索用时 15 毫秒
11.
12.
Ultraviolet resonance Raman (UVRR) spectra, with 260-nm excitation, are reported for oxidized and reduced nicotinamide adenine dinucleotides (NAD+ and NADH, respectively). Corresponding spectra are reported for these coenzymes when bound to the enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and liver and yeast alcohol dehydrogenases (LADH and YADH). The observed differences between the coenzyme spectra are interpreted in terms of conformation, hydrogen bonding, and general environment polarity differences between bound and free coenzymes and between coenzymes bound to different enzymes. The possibility of adenine protonation is discussed. UVRR spectra with 220-nm excitation also are reported for holo- and apo-GAPDH (GAPDH-NAD+ and GAPDH alone, respectively). In contrast with the 260-nm spectra, these show only bands due to vibrations of aromatic amino acid residues of the protein. The binding of coenzyme to GAPDH has no significant effect on the aromatic amino acid bands observed. This result is discussed in the light of the known structural change of GAPDH on binding coenzyme. Finally, UVRR spectra with 240-nm excitation are reported for GAPDH and an enzyme-substrate intermediate of GAPDH. Perturbations are reported for tyrosine and tryptophan bands on forming the acyl enzyme.  相似文献   
13.
The P1 plasmid partition system is responsible for segregation of daughter plasmids during division of the Escherichia coli host cell. The P1-encoded elements consist of two essential proteins, ParA and ParB, and the cis-acting incB region. The incB region determines partition-mediated incompatibility and contains the centromere-like site parS. We have isolated and purified the two proteins. ParB binds specifically to the incB region in vitro. DNase I footprinting assays place a strong binding site over the 35-bp parS sequence previously shown to be sufficient for partition when the Par proteins are supplied in trans. A weaker site lies within the incB region in sequences that are important for specifying incompatibility, but are not essential for partition. Gel band retardation assays show that a host factor binds specifically to the incB sequence. The factor strongly stimulates binding of ParB. Cutting the region at a site between the two ParB binding sites yields two fragments that can bind ParB but not host factor. Thus, information for host-factor binding lies in the region determining the specificity of plasmid incompatibility. The roles of parB and the host factor in partition and the specificity of plasmid incompatibility are discussed.  相似文献   
14.
The fate of bacteria in the food of a common freshwater invertebrate has been studied both in controlled laboratory experiments and in a stream sediment. The animal chosen was the larva of the burrowing mayfly,Ephemera danica. It ingested all available bacteria nonselectively. More bacteria were found associated with the hindgut than with the mesenteron despite continuous plug flow of food through the alimentary canal. Species of bacteria were affected in different ways.Aeromonas hydrophila andCitrobacter freundii were both digested, the former selectively.Flavobacterium sp. and other unidentified species appeared to attach to the hindgut wall. Digestion of bacteria was not due to a sudden change in pH.  相似文献   
15.
16.
Single batrachotoxin-activated sodium channels from rat brain were modified by trimethyloxonium (TMO) after incorporation in planar lipid bilayers. TMO modification eliminated saxitoxin (STX) sensitivity, reduced the single channel conductance by 37%, and reduced calcium block of inward sodium currents. These effects always occurred concomitantly, in an all-or-none fashion. Calcium and STX protected sodium channels from TMO modification with potencies similar to their affinities for block. Calcium inhibited STX binding to rat brain membrane vesicles and relieved toxin block of channels in bilayers, apparently by competing with STX for the toxin binding site. These results suggest that toxins, permeant cations, and blocking cations can interact with a common site on the sodium channel near the extracellular surface. It is likely that permeant cations transiently bind to this superficial site, as the first of several steps in passing inward through the channel.  相似文献   
17.
Epidermal growth factor (EGF) stimulates EGF receptor synthesis   总被引:13,自引:0,他引:13  
Epidermal growth factor (EGF) binds to the extracellular domain of a specific 170,000-dalton transmembrane glycoprotein; this results in rapid removal of both ligand and receptor from the cell surface. In WB cells, a rat hepatic epithelial cell line, ligand-directed receptor internalization leads to receptor degradation. We tested whether the EGF receptor was replenished at a constitutive or enhanced rate following EGF binding by immunoprecipitating biosynthetically labeled EGF receptor from cells cultured with [35S]methionine. EGF stimulated receptor synthesis within 2 h in a dose-dependent manner; this was particularly evident when examining the nascent form of the receptor. To determine the site of EGF action, total WB cell RNA was transferred to nitrocellulose paper after electrophoresis and was hybridized to cDNA probes from both the external and cytoplasmic coding regions of the human EGF receptor. EGF increased receptor mRNA by 3-5-fold. Therefore, at least in some cells, the surface action of EGF that leads to EGF receptor degradation is counterbalanced by a positive effect on receptor synthesis.  相似文献   
18.
Summary Current procedures for isolating intestinal epithelial cell surface and intracellular membranes are based on the assumption that each organelle is marked by some unique constitutent. This assumption seemed inconsistent with the dynamic picture of subcellular organization emerging from studies of membrane turnover and recycling. Therefore, we have designed an alternative fractionation which is independent ofa priori marker assignments. We subjected mucosal homogenates to a sequence of separations based on sedimentation coefficient, equilibrium density, and partitioning in aqueous polymer twophase systems. The resulting distributions of protein and enzymatic markers define a total of 17 physically and biochemically distinct membrane populations. Among these are: basal-lateral membranes, with Na,K-ATPase enriched 21-fold; brush-border membranes, with alkaline phosphatase enriched as much as 38-fold; two populations apparently derived from the endoplasmic reticulum; a series of five populations believed to have been derived from the Golgi complex; and a series of five acid phosphatase-rich populations which we cannot identify unequivocally. Each of the five enzymatic markers we have followed is associated with a multiplicity of membrane populations. Basallateral, endoplasmic reticulum, and Golgi membranes contain alkaline phosphatase at the same specific activity as the initial homogenate. Similarly, Na,K-ATPase appears to be associated branes at specific activities two-to seven-fold that of the initial homogenate.  相似文献   
19.
The yield from glucose of ammonia-grown carbon-limited continuous cultures of Penicillium stipitatum was ca. 20% higher than that of nitrate-grown cultures at all growth rates examined. However, the yield from oxygen was similar during growth on both nitrogen sources. Under phosphate limitation the specific rate of gluconic acid and stipitatic acid production increased with growth rate, but the former product accounted for virtually 100% of the excreted carbon. Stipitatic acid was not produced under nitrogen limitation, and glucose supplied to the culture in excess of that required for growth was virtually quantatively converted into gluconic acid. Productivities of 11.4 g gluconic acid/L/h were stably maintained in continuous culture. Under conditions of glucose excess the enzyme glucose oxidase was excreted into the culture. The specific activity of this extracellular enzyme increased when the input glucose concentration to the culture was progressively increased. The excretion of a protein under nitrogen limitation suggests that this enzyme plays an important role under these conditions. Indeed, it was demonstrated that nitrogen-limited cultures did not overmetabolize gluconate at either pH 6.5 or 3.5, although up to 29 g/L gluconate was present in the culture. The Y(gluconate) and YO(2) of C- and N-limited gluconate-grown cultures were similar indicating that the rapid conversion of glucose to gluconate probably affords a means of regulating carbon flow in this organism. Nitrogen-limited cultures of P. stipitatum overmetabolized glucose to a much greater extent than acetate, fructose, or gluconate.  相似文献   
20.
Unidirectional transport (influx and efflux) of adenine nucleotides in rat liver mitochondria was examined using carboxyatractyloside to inhibit rapid exchange of matrix and external adenine nucleotides via the adenine nucleotide translocase. Influx of adenine nucleotides was concentration-dependent. ATP was the preferred substrate with a Km of 2.67 mM and V of the preferred substrate with a Km of 2.67 mM and V of 8.33 nmol/min/mg of protein. For ADP, the Km was 14.7 mM and V was 10.8 nmol/min/mg of protein. Efflux of adenine nucleotides was also concentration-dependent, varying directly as a function of the matrix adenine nucleotide pool size. Any increase in the influx of adenine nucleotides was coupled to an increase in efflux. However, as the external ATP concentration was increased, influx was stimulated to a much greater extent than was efflux. This imbalance suggested that under certain conditions adenine nucleotide movement might be coupled to the movement of an alternate anion such as phosphate. Adenine nucleotide efflux increased as the external phosphate concentration was varied from 0.5 to 4 mM. Also, increasing the external phosphate concentration caused adenine nucleotide influx to decrease, suggesting competition. In the absence of external adenines and phosphate, no efflux occurred. Both adenine nucleotide influx and efflux were depressed if Mg2+ was omitted. Adenine nucleotide efflux in the presence of external phosphate was inhibited much less by lack of Mg2+ than was efflux in the presence of external ATP. This evidence supports a model in which either adenine nucleotides (probably with Mg2+) or phosphate can move across the mitochondrial membrane on a single carrier. Net adenine nucleotide movements can occur when adenine nucleotide movement is coupled to the movement of phosphate in the opposite direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号