首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5240篇
  免费   279篇
  国内免费   2篇
  2023年   10篇
  2022年   18篇
  2021年   68篇
  2020年   45篇
  2019年   54篇
  2018年   89篇
  2017年   78篇
  2016年   126篇
  2015年   180篇
  2014年   204篇
  2013年   350篇
  2012年   368篇
  2011年   378篇
  2010年   246篇
  2009年   234篇
  2008年   361篇
  2007年   374篇
  2006年   330篇
  2005年   311篇
  2004年   323篇
  2003年   308篇
  2002年   259篇
  2001年   41篇
  2000年   40篇
  1999年   53篇
  1998年   57篇
  1997年   57篇
  1996年   41篇
  1995年   58篇
  1994年   40篇
  1993年   44篇
  1992年   28篇
  1991年   21篇
  1990年   37篇
  1989年   25篇
  1988年   16篇
  1987年   21篇
  1986年   21篇
  1985年   24篇
  1984年   23篇
  1983年   23篇
  1982年   27篇
  1981年   32篇
  1980年   13篇
  1979年   9篇
  1978年   8篇
  1977年   6篇
  1976年   7篇
  1972年   5篇
  1965年   6篇
排序方式: 共有5521条查询结果,搜索用时 15 毫秒
121.
122.
Pyrus calleryana var. dimorphophylla, a variety of Callery pear (Pyrus calleryana), is endemic to the Tokai district of central Japan, and is currently listed as “Endangered”. The remnant habitats and trees are of limited number, and highly fragmented. As the first step in determining appropriate conservation units, genetic diversity and differentiation in this species were investigated using chloroplast DNA (cpDNA) and nuclear simple sequence repeat (SSR) polymorphisms. All possible remnant trees were genotyped, then six populations were defined based on the results of cpDNA haplotype determination and Bayesian clustering approaches performed using the SSR locus data. Some trees appeared to originate from artificial propagation. Some individuals were difficult to differentiate genetically from the related species, Pyrus × uyematsuana, which is considered to be a hybrid between P. calleryana var. dimorphophylla and a possibly naturalized species, Pyrus pyrifolia, implying that introgression between these species may have occurred. In P. calleryana var. dimorphophylla, anthropogenic factors such as propagation and related species planting are probably major causes of complexity in the genetic structure.  相似文献   
123.
124.
125.
Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92–Gln197) at 1.5 Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane.  相似文献   
126.
The authors have previously presented a mathematical model to predict transit time of a neutrophil through an alveolar capillary segment which was modeled as an axisymmetric arc-shaped constriction settled in a cylindrical straight pipe to investigate the influence of entrance curvature of a capillary on passage of the cell. The axially asymmetric cross section of a capillary also influences the transit time because it requires three-dimensional deformation of a cell when it passes through the capillary and could lead to plasma leakage between the cell surface and the capillary wall. In this study, a rectangular channel was introduced, the side walls of which were moderately constricted, as a representative of axially asymmetric capillaries. Dependence of transit time of a neutrophil passing through the constriction on the constriction geometry, i.e., channel height, throat width and curvature radius of the constriction, was numerically investigated, the transit time being compared with that through the axisymmetric model. It was found that the transit time is dominated by the throat hydraulic diameter and curvature radius of the constriction and that the throat aspect ratio little affects the transit time with a certain limitation, indicating that if an appropriate curvature radius is chosen, such a rectangular channel model can be substituted for an axisymmetric capillary model having the same throat hydraulic diameter in terms of the transit time by choosing an appropriate curvature radius. Thus, microchannels fabricated by the photolithography technique, whose cross section is generally rectangular, are expected to be applicable to in vitro model experiments of neutrophil retention and passage in the alveolar capillaries.  相似文献   
127.
Small cell lung cancer (SCLC) is an aggressive tumor and prognosis remains poor. Therefore, the development of more effective therapy is needed. We previously reported that high levels of an anti-c-kit antibody (12A8) accumulated in SCLC xenografts. In the present study, we evaluated the efficacy of two antibodies (12A8 and 67A2) for radioimmunotherapy (RIT) of an SCLC mouse model by labeling with the 90Y isotope.

Methods

111In- or 125I-labeled antibodies were evaluated in vitro by cell binding, competitive inhibition and cellular internalization assays in c-kit-expressing SY cells and in vivo by biodistribution in SY-bearing mice. Therapeutic efficacy of 90Y-labeled antibodies was evaluated in SY-bearing mice upto day 28 and histological analysis was conducted at day 7.

Results

[111In]12A8 and [111In]67A2 specifically bound to SY cells with high affinity (8.0 and 1.9 nM, respectively). 67A2 was internalized similar to 12A8. High levels of [111In]12A8 and [111In]67A2 accumulated in tumors, but not in major organs. [111In]67A2 uptake by the tumor was 1.7 times higher than for [111In]12A8. [90Y]12A8, but not [90Y]67A2, suppressed tumor growth in a dose-dependent manner. Tumors treated with 3.7 MBq of [90Y]12A8, and 1.85 and 3.7 MBq of [90Y]67A2 (absorbed doses were 21.0, 18.0 and 35.9 Gy, respectively) almost completely disappeared approximately 2 weeks after injection, and regrowth was not observed except for in one mouse treated with 1.85 MBq [90Y]67A2. The area of necrosis and fibrosis increased depending on the RIT effect. Apoptotic cell numbers increased with increased doses of [90Y]12A8, whereas no dose-dependent increase was observed following [90Y]67A2 treatment. Body weight was temporarily reduced but all mice tolerated the RIT experiments well.

Conclusion

Treatment with [90Y]12A8 and [90Y]67A2 achieved a complete therapeutic response when SY tumors received an absorbed dose greater than 18 Gy and thus are promising RIT agents for metastatic SCLC cells at distant sites.  相似文献   
128.
Mastitis, inflammation of the mammary gland, is the most costly common disease in the dairy industry, and is caused by mammary pathogenic bacteria, including Escherichia coli. The bacteria invade the mammary alveolar lumen and disrupt the blood-milk barrier. In normal mammary gland, alveolar epithelial tight junctions (TJs) contribute the blood-milk barrier of alveolar epithelium by blocking the leakage of milk components from the luminal side into the blood serum. In this study, we focused on claudin subtypes that participate in the alveolar epithelial TJs, because the composition of claudins is an important factor that affects TJ permeability. In normal mouse lactating mammary glands, alveolar TJs consist of claudin-3 without claudin-1, -4, and -7. In lipopolysaccharide (LPS)-induced mastitis, alveolar TJs showed 2-staged compositional changes in claudins. First, a qualitative change in claudin-3, presumably caused by phosphorylation and participation of claudin-7 in alveolar TJs, was recognized in parallel with the leakage of fluorescein isothiocyanate-conjugated albumin (FITC-albumin) via the alveolar epithelium. Second, claudin-4 participated in alveolar TJs with claudin-3 and claudin-7 12 h after LPS injection. The partial localization of claudin-1 was also observed by immunostaining. Coinciding with the second change of alveolar TJs, the severe disruption of the blood-milk barrier was recognized by ectopic localization of β-casein and much leakage of FITC-albumin. Furthermore, the localization of toll-like receptor 4 (TLR4) on the luminal side and NFκB activation by LPS was observed in the alveolar epithelial cells. We suggest that the weakening and disruption of the blood-milk barrier are caused by compositional changes of claudins in alveolar epithelial TJs through LPS/TLR4 signaling.  相似文献   
129.
Energy-conversion systems mediated by bacterial metabolism have recently attracted much attention, and therefore, demands for tuning of bacterial metabolism are increasing. It is widely recognized that intracellular redox atmosphere which is generally tuned by dissolved oxygen concentration or by appropriate selection of an electron acceptor for respiration is one of the important factors determining the bacterial metabolism. In general, electrochemical approaches are valuable for regulation of redox-active objects. However, the intracellular redox conditions are extremely difficult to control electrochemically because of the presence of insulative phospholipid bilayer membranes. In the present work, the limitation can be overcome by use of the bacterial genus Shewanella , which consists of species that are able to respire via cytochromes abundantly expressed in their outer-membrane with solid-state electron acceptors, including anodes. The electrochemical characterization and the gene expression analysis revealed that the activity of tricarboxylic acid (TCA) cycle in Shewanella cells can be reversibly gated simply by changing the anode potential. Importantly, our present results for Shewanella cells cultured in an electrochemical system under poised potential conditions showed the opposite relationship between the current and electron acceptor energy level, and indicate that this unique behavior originates from deactivation of the TCA cycle in the (over-)oxidative region. Our result obtained in this study is the first demonstration of the electrochemical gating of TCA cycle of living cells. And we believe that our findings will contribute to a deeper understanding of redox-dependent regulation systems in living cells, in which the intracellular redox atmosphere is a critical factor determining the regulation of various metabolic and genetic processes.  相似文献   
130.
Biological Trace Element Research - The essential trace element zinc maintains liver functions. Liver diseases can alter overall zinc concentrations, and hypozincemia is associated with various...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号