首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   636篇
  免费   37篇
  国内免费   2篇
  675篇
  2023年   10篇
  2022年   12篇
  2021年   17篇
  2020年   10篇
  2019年   10篇
  2018年   14篇
  2017年   8篇
  2016年   23篇
  2015年   28篇
  2014年   26篇
  2013年   41篇
  2012年   48篇
  2011年   74篇
  2010年   46篇
  2009年   31篇
  2008年   50篇
  2007年   53篇
  2006年   31篇
  2005年   36篇
  2004年   33篇
  2003年   13篇
  2002年   20篇
  2001年   4篇
  2000年   3篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1963年   1篇
排序方式: 共有675条查询结果,搜索用时 15 毫秒
21.
Colorectal cancer (CRC) is the third most common cancer in men and the second in women worldwide. CRC development is the result of genetic and epigenetic alterations accumulation in the epithelial cells of colon mucosa. In the present study, DNA methylation, an epigenetic event, was evaluated in tumoral and matching normal epithelium in a cohort of 61 CRC patients. The results confirmed and expanded knowledge for the tumor suppressor genes hMLH1, MGMT, APC, and CDH1. Promoter methylation was observed for all the examined genes in different percentage. A total of 71% and 10% of the examined cases were found to be methylated in two or more and in all genes, respectively. mRNA and protein levels were also evaluated. Promoter methylation of hMLH1, MGMT, APC, and CDH1 genes was present at the early stages of tumor’s formation and it could also be detected in the normal mucosa. Correlations of the methylated genes with patient’s age and tumor’s clinicopathological characteristics were also observed. Our findings suggest that DNA methylation is a useful marker for tumor progression monitoring and that promoter methylation in certain genes is associated with more advanced tumor stage, poor differentiation, and metastasis.  相似文献   
22.
We describe a case of an acquired subglottic cyst presented with persistent stridor and voice hoarsening in a baby diagnosed with Williams–Beuren syndrome that was born premature and required intubation during neonatal period. We also comment on whether this is a coincidence or there can be an association between impaired elastogenesis, a feature of patients with the syndrome and the formation of a subglottic cyst.  相似文献   
23.
Klinefelter syndrome is a sex chromosomal abnormality (47, XXY karyotype), occurring approximately in 1 in 1000 male live births. In the present study proteomic analysis was performed in twelve 2nd trimester amniotic fluid samples, eight coming from pregnancies with normal males and four with Klinefelter syndrome foetuses, as shown by routine prenatal cytogenetic analysis. Samples were analysed by 2-DE, coupled with MALDI-TOF-MS analysis. Three proteins (Ceruloplasmin, Alpha-1-antitrypsin and Zinc-alpha-2-glycoprotein) were found to be up-regulated in samples obtained from pregnancies with Klinefelter syndrome foetuses, whereas four proteins (Apolipoprotein A-I, Plasma retinol-binding protein, Gelsolin, and Vitamin D-binding protein) were down regulated when compared to proteins detected in samples from normal foetuses. The differential expression of Ceruloplasmin, Apolipoprotein A-I and Plasma retinol-binding protein was further confirmed by immunoblotting. Since these proteins are likely to cross the placenta barrier and be detected in maternal plasma they could be used as biomarkers for the non-invasive prenatal diagnosis of Klinefelter syndrome.  相似文献   
24.
The vascular extracellular matrix (ECM) is essential for the structural integrity of the vessel wall and also serves as a substrate for the binding and retention of secreted products of vascular cells as well as molecules coming from the circulation. Although proteomics has been previously applied to vascular tissues, few studies have specifically targeted the vascular ECM and its associated proteins. Thus, its detailed composition remains to be characterized. In this study, we describe a methodology for the extraction of extracellular proteins from human aortas and their identification by proteomics. The approach is based on (a) effective decellularization to enrich for scarce extracellular proteins, (b) successful solubilization and deglycosylation of ECM proteins, and (c) relative estimation of protein abundance using spectral counting. Our three-step extraction approach resulted in the identification of 103 extracellular proteins of which one-third have never been reported in the proteomics literature of vascular tissues. In particular, three glycoproteins (podocan, sclerostin, and agrin) were identified for the first time in human aortas at the protein level. We also identified extracellular adipocyte enhancer-binding protein 1, the cartilage glycoprotein asporin, and a previously hypothetical protein, retinal pigment epithelium (RPE) spondin. Moreover, our methodology allowed us to screen for proteolysis in the aortic samples based on the identification of proteolytic enzymes and their corresponding degradation products. For instance, we were able to detect matrix metalloproteinase-9 by mass spectrometry and relate its presence to degradation of fibronectin in a clinical specimen. We expect this proteomics methodology to further our understanding of the composition of the vascular extracellular environment, shed light on ECM remodeling and degradation, and provide insights into important pathological processes, such as plaque rupture, aneurysm formation, and restenosis.Vascular cells, in particular vascular smooth muscle cells, produce and maintain a complex meshwork of ECM.1 The ECM is not only the scaffold for the anchorage and mobility of residing cells but also absorbs and transduces the shear and strain forces of the blood flow. It is primarily composed of elastin, collagen, proteoglycans, and glycoproteins. The elastin fibers and type I and III fibrillar collagens form a rigid network of highly cross-linked interstitial matrix. They offer elasticity (elastin) and tensile strength (collagens). Proteoglycans, because of their negative charge, attract water and confer resistance to compression. Finally, glycoproteins participate in matrix organization and are essential for cell attachment.The vascular ECM also serves as a substrate for the binding and retention of secreted, soluble proteins of vascular cells as well as molecules coming from the circulation, including lipoproteins, growth factors, cytokines, proteases, and protease inhibitors. These components are invariably associated with ECM proteins, especially proteoglycans. Together they comprise the vascular extracellular environment and are pivotal for disease processes, such as atherosclerosis and aneurysm formation (1).Although proteomics has been previously applied to vascular tissues, only one study has specifically targeted the extracellular vascular environment (2). This study was focused on the isolation of intimal proteoglycans from human carotid arteries. Moreover, most proteomics studies use whole tissue lysates, which are rich in cellular proteins that inevitably mask the identification of the less abundant proteins of the vascular extracellular environment (35). Thus, the composition of the vascular ECM and its associated proteins remains poorly defined. In the present study, we used morphologically normal human aortic samples to develop a method for the extraction of proteins present in the extracellular environment, including ECM proteins and proteins attached to the ECM. We had three specific aims: first, to reduce the contamination with cellular proteins, thereby increasing the chance of identifying scarce extracellular proteins; second, to efficiently solubilize and deglycosylate ECM proteins to improve their analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS); and third, to interface the nanoflow LC system to a recently developed injection device, which splits the flow from the analytical column, to allow the reanalysis of the same sample during a single LC-MS/MS run (RePlay, Advion).Our methodology provides a detailed overview of the aortic ECM and its associated proteins, many reported for the first time in proteomics analysis of the vasculature. Most importantly, this method could be adapted for use with other tissues to further our understanding of the composition of extracellular environment and ECM turnover under various disease conditions.  相似文献   
25.
Matrix metalloproteinase inhibitors as anticancer agents   总被引:1,自引:0,他引:1  
The important role of matrix metalloproteinases (MMPs) in the process of carcinogenesis is well established. However, despite very promising activity in a plethora of preclinical models, MMP inhibitors (MMPIs) failed to demonstrate a statistically significant survival advantage in advanced stage clinical trials in most human malignancies. Herein, we review the implication of MMPs in carcinogenesis, outline the pharmacology and current status of various MMPIs as anticancer agents and discuss the etiologies for the discrepancy between their preclinical and clinical evaluation. Finally, strategies for effective incorporation of MMPIs in current anticancer therapies are proposed.  相似文献   
26.
The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.  相似文献   
27.
The prognosis in advanced-stage ovarian cancer remains poor. Tumor-specific intraoperative fluorescence imaging may improve staging and debulking efforts in cytoreductive surgery and thereby improve prognosis. The overexpression of folate receptor-α (FR-α) in 90-95% of epithelial ovarian cancers prompted the investigation of intraoperative tumor-specific fluorescence imaging in ovarian cancer surgery using an FR-α-targeted fluorescent agent. In patients with ovarian cancer, intraoperative tumor-specific fluorescence imaging with an FR-α-targeted fluorescent agent showcased the potential applications in patients with ovarian cancer for improved intraoperative staging and more radical cytoreductive surgery.  相似文献   
28.
29.
Syntrophomonas wolfei is a specialist, evolutionarily adapted for syntrophic growth with methanogens and other hydrogen- and/or formate-using microorganisms. This slow-growing anaerobe has three putative ribosome RNA operons, each of which has 16S rRNA and 23S rRNA genes of different length and multiple 5S rRNA genes. The genome also contains 10 RNA-directed, DNA polymerase genes. Genomic analysis shows that S. wolfei relies solely on the reduction of protons, bicarbonate or unsaturated fatty acids to re-oxidize reduced cofactors. Syntrophomonas wolfei lacks the genes needed for aerobic or anaerobic respiration and has an exceptionally limited ability to create ion gradients. An ATP synthase and a pyrophosphatase were the only systems detected capable of creating an ion gradient. Multiple homologues for β-oxidation genes were present even though S. wolfei uses a limited range of fatty acids from four to eight carbons in length.Syntrophomonas wolfei, other syntrophic metabolizers with completed genomic sequences, and thermophilic anaerobes known to produce high molar ratios of hydrogen from glucose have genes to produce H(2) from NADH by an electron bifurcation mechanism. Comparative genomic analysis also suggests that formate production from NADH may involve electron bifurcation. A membrane-bound, iron-sulfur oxidoreductase found in S. wolfei and Syntrophus aciditrophicus may be uniquely involved in reverse electron transport during syntrophic fatty acid metabolism. The genome sequence of S. wolfei reveals several core reactions that may be characteristic of syntrophic fatty acid metabolism and illustrates how biological systems produce hydrogen from thermodynamically difficult reactions.  相似文献   
30.
In this article, we present a de novo method for predicting protein domain boundaries, called OPUS-Dom. The core of the method is a novel coarse-grained folding method, VECFOLD, which constructs low-resolution structural models from a target sequence by folding a chain of vectors representing the predicted secondary-structure elements. OPUS-Dom generates a large ensemble of folded structure decoys by VECFOLD and labels the domain boundaries of each decoy by a domain parsing algorithm. Consensus domain boundaries are then derived from the statistical distribution of the putative boundaries and three empirical sequence-based domain profiles. OPUS-Dom generally outperformed several state-of-the-art domain prediction algorithms over various benchmark protein sets. Even though each VECFOLD-generated structure contains large errors, collectively these structures provide a more robust delineation of domain boundaries. The success of OPUS-Dom suggests that the arrangement of protein domains is more a consequence of limited coordination patterns per domain arising from tertiary packing of secondary-structure segments, rather than sequence-specific constraints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号