首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1756篇
  免费   139篇
  国内免费   1篇
  2023年   3篇
  2022年   3篇
  2021年   35篇
  2020年   13篇
  2019年   23篇
  2018年   33篇
  2017年   25篇
  2016年   58篇
  2015年   102篇
  2014年   114篇
  2013年   111篇
  2012年   174篇
  2011年   133篇
  2010年   94篇
  2009年   90篇
  2008年   122篇
  2007年   111篇
  2006年   91篇
  2005年   84篇
  2004年   98篇
  2003年   87篇
  2002年   83篇
  2001年   18篇
  2000年   16篇
  1999年   21篇
  1998年   27篇
  1997年   14篇
  1996年   14篇
  1995年   8篇
  1994年   11篇
  1993年   10篇
  1992年   7篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1951年   1篇
  1925年   1篇
排序方式: 共有1896条查询结果,搜索用时 877 毫秒
991.
992.
The heterogeneous, short RNAs produced from the high, copy, short mobile elements (SINEs) interact with proteins to form RNA-protein (RNP) complexes. In particular, the BC1 RNA, which is transcribed to high levels specifically in brain and testis from one locus of the ID SINE family, exists as a discrete RNP complex. We expressed a series of altered BC1, and other SINE-related RNAs, in several cell lines and tested for the mobility of the resulting RNP complexes in a native PAGE assay to determine which portions of these SINE RNAs contribute to protein binding. When different SINE RNAs were substituted for the BC1 ID sequence, the resulting RNPs exhibited the same mobility as BC1. This indicates that the protein(s) binding to the ID portion of BC1 is not sequence specific and may be more dependent upon the secondary structure of the RNA. It also suggests that all SINE RNAs may bind a similar set of cellular proteins. Deletion of the A-rich region of BC1 RNA has a marked effect on the mobility of the RNP. Rodent cell lines exhibit a slightly different mobility for this shifted complex when compared to human cell lines, reflecting evolutionary differences in one or more of the protein components. On the basis of mobility change observed in RNP complexes when the A-rich region is removed, we decided to examine poly(A) binding protein (PABP) as a candidate member of the RNP. An antibody against the C terminus of PABP is able to immunoprecipitate BC1 RNA, confirming PABP's presence in the BC1 RNP. Given the ubiquitous role of poly(A) regions in the retrotransposition process, these data suggest that PABP may contribute to the SINE retrotransposition process.  相似文献   
993.
We have succeeded in culturing an axenic biofilm of the green sulfur bacterium Prosthecochloris aestuarii strain CE 2404 in an artificial sandy sediment under visible light (400–700 nm). This simulates the conditions of deep submerged sediments. A five-week incubation period, using a 16-hour light / 8-hour dark regime, was applied in the benthic gradient chamber (BGC). The biofilm was located below the oxygen penetration depth of 1.2 mm, namely between 1.5 and 2.5 mm and the biomass peak was at 2.1 mm depth. This is much shallower compared to previously described artificial mats of P. aestuarii, which were grown in the BGC under near infrared (NIR)-rich light. High resolution time courses of photosynthesis were measured as sulfide photo-oxidation rates and studied under visible light and visible light amended with NIR to assess the effect of light quality. Sulfide photo-oxidation rates were rather low under visible light and strongly stimulated at most depths under full light conditions. However, under the latter conditions the rates decelerated after a maximum rate was reached at 8–10 min, apparently due to diffusional limitation of sulfide supply. It was concluded that the top of the mat was not limited by the photon flux density, while the biomass peak and the bottom of the biofilm were severely light limited under the culture conditions. These results support the hypothesis that a biofilm of P. aestuarii can develop in deep submerged sediments, when the oxygen penetration depth is very shallow. Nevertheless, the addition of NIR light strongly enhances the potential of P. aestuarii to grow deeper in the sediment.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   
994.
Proteolytic processing of mutant huntingtin (mhtt) is regarded as a key event in the pathogenesis of Huntington's disease (HD). Mhtt fragments containing a polyglutamine expansion form intracellular inclusions and are more cytotoxic than full-length mhtt. Here, we report that two distinct mhtt fragments, termed cp-A and cp-B, differentially build up nuclear and cytoplasmic inclusions in HD brain and in a cellular model for HD. Cp-A is released by cleavage of htt in a 10 amino acid domain and is the major fragment that aggregates in the nucleus. Furthermore, we provide evidence that cp-A and cp-B are most likely generated by aspartic endopeptidases acting in concert with the proteasome to ensure the normal turnover of htt. These proteolytic processes are thus potential targets for therapeutic intervention in HD.  相似文献   
995.
The ubiquitin/proteasome pathway plays a key role in regulating cell cycle progression. Previously, we reported that a conditional mutation in the Saccharomyces cerevisiae gene RPT4/PCS1, which encodes one of six ATPases in the proteasome 19S cap complex/regulatory particle (RP), causes failure of spindle pole body (SPB) duplication. To improve our understanding of Rpt4p, we created 58 new mutations, 53 of which convert clustered, charged residues to alanine. Virtually all mutations that affect the N-terminal region, which contains a putative nuclear localization signal and coiled-coil motif, result in a wild-type phenotype. Nine mutations that affect the central ATPase domain and the C-terminal region confer recessive lethality. The two conditional mutations identified, rpt4-145 and rpt4-150, affect the C terminus. After shift to high temperature, these mutations generally cause cells to progress slowly through the first cell cycle and to arrest in the second cycle with large buds, a G2 content of DNA, and monopolar spindles, although this phenotype can vary depending on the medium. Additionally, we describe a genetic interaction between RPT4 and the naturally polymorphic gene SSD1, which in wild-type form modifies the rpt4-145 phenotype such that cells arrest in G2 of the first cycle with complete bipolar spindles.  相似文献   
996.
997.
The alternative oxidase (AOX) is a ubiquinol oxidase found in the mitochondrial respiratory chain of plants as well as some fungi and protists. It has been predicted to contain a coupled diiron center on the basis of a conserved sequence motif consisting of the proposed iron ligands, four glutamate and two histidine residues. However, this prediction has not been experimentally verified. Here we report the high level expression of the Arabidopsis thaliana alternative oxidase AOX1a as a maltose-binding protein fusion in Escherichia coli. Reduction and reoxidation of a sample of isolated E. coli membranes containing the alternative oxidase generated an EPR signal characteristic of a mixed-valent Fe(II)/Fe(III) binuclear iron center. The high anisotropy of the signal, the low value of the g-average tensor, and a small exchange coupling (-J) suggest that the iron center is hydroxo-bridged. A reduced membrane preparation yielded a parallel mode EPR signal with a g-value of about 15. In AOX containing a mutation of a putative glutamate ligand of the diiron center (E222A or E273A) the EPR signals are absent. These data provide evidence for an antiferromagnetic-coupled binuclear iron center, and together with the conserved sequence motif, identify the alternative oxidase as belonging to the growing family of diiron carboxylate proteins. The alternative oxidase is the first integral membrane protein in this family, and adds a new catalytic activity (ubiquinol oxidation) to this group of enzymatically diverse proteins.  相似文献   
998.
The biochemical content of articular cartilage: an original MRI approach   总被引:7,自引:0,他引:7  
The MR aspect of articular cartilage, that reflects the interactions between protons and macromolecular constituents, is affected by the intrinsic tissue structure (water content, the content of matrix constituents, collagen network organization), imager characteristics, and acquisition parameters. On the T1-weighted sequences, the bovine articular cartilage appears as an homogeneous tissue in high signal intensity, whatever the age of animals considered, whereas on the T2-weighted sequences, the articular bovine cartilage presents variations of its imaging pattern (laminar appearance) well correlated to the variations of its histological and biochemical structure. The T2 relaxation time measurement (T2 mapping), which reflects quantitatively the signal intensity variations observed on T2 weighted sequences, is a way to evaluate more precisely the modifications of cartilage structure during the aging and maturation processes (rat's study). This technique so far confined to experimental micro-imagers is now developed on clinical imagers. Consequently, it may permit to depict the early stages of osteoarthritic disease (OA) or to evaluate the chondroprotective effect of drugs.  相似文献   
999.
Chook YM  Jung A  Rosen MK  Blobel G 《Biochemistry》2002,41(22):6955-6966
Karyopherinbeta2 (Kapbeta2) imports a variety of mRNA binding proteins into the nucleus. Release of import substrates in the nucleus involves formation of a high-affinity Kapbeta2-RanGTP complex and concomitant dissociation of import substrates. The crystal structure of the Kapbeta2-RanGppNHp complex shows that Ran binds in the Kapbeta2 N-terminal arch and substrate most likely binds its C-terminal arch. The structure suggested a mechanism for Ran-mediated substrate dissociation where a long internal acidic loop in Kapbeta2 transmits structural information between the GTPase and substrate sites, leading to displacement of substrate by the loop when Ran is bound. To study the molecular mechanism of substrate dissociation, we have cleaved the acidic loop of Kapbeta2 proteolytically (cl-Kapbeta2) and also constructed a mutant of Kapbeta2 with a truncated loop (TL-Kapbeta2). Both modified Kapbeta2s are unable to undergo Ran-mediated substrate dissociation. We have also mapped the boundaries of the Kapbeta2 binding site of substrate mRNA binding protein A1 using a widely applicable method employing NMR spectroscopy. This has allowed design of reagents to quantitate the affinities of the Kapbeta2 proteins for Ran and substrate. cl-Kapbeta2, TL-Kapbeta2, and native Kapbeta2 have comparable affinities for both RanGppNHp and import substrates, indicating that perturbation of the loop has not altered the strength of binary Kapbeta2-Ran or Kapbeta2-substrate interactions. The TL-Kapbeta2 mutant also binds RanGppNHp and substrate simultaneously to form a ternary complex, indicating that in addition to the loss of coupling between Ran binding and substrate dissociation, the two ligand sites on Kapbeta2 are spatially distinct. The uncoupling of Ran binding and substrate dissociation in the TL-Kapbeta2 mutant is further evident in significant loss of Ran-mediated nuclear uptake of fluorescent substrate in digitonin-permeabilized HeLa cells. These results support our previously proposed GTPase-mediated Kapbeta2-substrate dissociation mechanism where the acidic loop of Kapbeta2 physically couples distinct Ran and substrate binding sites.  相似文献   
1000.
EGF, but not TGF alpha, efficiently induces degradation of the EGF receptor (EGFR). We show that EGFR was initially polyubiquitinated to the same extent upon incubation with EGF and TGF alpha, whereas the ubiquitination was more sustained by incubation with EGF than with TGF alpha. Consistently, the ubiquitin ligase c-Cbl was recruited to the plasma membrane upon activation of the EGFR with EGF and TGF alpha, but localized to endosomes only upon activation with EGF. EGF remains bound to the EGFR upon endocytosis, whereas TGF alpha dissociates from the EGFR. Therefore, the sustained polyubiquitination is explained by EGF securing the kinase activity of endocytosed EGFR. Overexpression of the dominant negative N-Cbl inhibited ubiquitination of the EGFR and degradation of EGF and EGFR. This demonstrates that EGF-induced ubiquitination of the EGFR as such is important for lysosomal sorting. Both lysosomal and proteasomal inhibitors blocked degradation of EGF and EGFR, and proteasomal inhibitors inhibited translocation of activated EGFR from the outer limiting membrane to inner membranes of multivesicular bodies (MVBs). Therefore, lysosomal sorting of kinase active EGFR is regulated by proteasomal activity. Immuno-EM showed the localization of intact EGFR on internal membranes of MVBs. This demonstrates that the EGFR as such is not the proteasomal target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号