首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1799篇
  免费   79篇
  国内免费   2篇
  2024年   3篇
  2023年   9篇
  2022年   14篇
  2021年   27篇
  2020年   32篇
  2019年   27篇
  2018年   38篇
  2017年   54篇
  2016年   53篇
  2015年   50篇
  2014年   65篇
  2013年   129篇
  2012年   147篇
  2011年   128篇
  2010年   102篇
  2009年   93篇
  2008年   119篇
  2007年   106篇
  2006年   103篇
  2005年   117篇
  2004年   86篇
  2003年   104篇
  2002年   71篇
  2001年   22篇
  2000年   18篇
  1999年   12篇
  1998年   18篇
  1997年   16篇
  1996年   8篇
  1995年   13篇
  1994年   12篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1986年   3篇
  1985年   9篇
  1984年   6篇
  1983年   2篇
  1982年   7篇
  1981年   3篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
排序方式: 共有1880条查询结果,搜索用时 15 毫秒
121.
A Gram-positive rod-shaped bacterium isolated on nutrient agar plates incubated at 28 ± 2°C. The identity of the bacterium was confirmed by sequencing of the 16S rRNA gene and it reveals that it shares highest similarity with Bacillus thioparus CECT 7196T (99.08%). It was capable of growing at temperatures ranging from 4 to 40°C, but optimum growth was observed at 28 ± 2°C. Strain NII-0902 is endowed with multiple plant growth promotion attributes such as phosphate solubilization, Indole acetic acid (IAA), siderophore and HCN production, which were expressed differentially at sub-optimal temperatures (5–40°C). It was able to solubilize phosphate (17.7 μg ml−1), and produce IAA (139.7 μg ml−1) at 28 ± 2°C. Qualitative detection of siderophore production and HCN were also observed. At 5°C it was found to express all the plant growth promotion attributes except HCN production. The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth-promoting rhizobacteria (PGPR). Bacillus sp. NII-0902 has a potential ability to colonize roots visualized by transparency, bacterial growth (turbid, milky and narrow zone) along and around roots and truly supported by scanning electron micrograph. Hence, it is proposed that, Bacillus thioparus sp. NII-0902 could be deployed as an inoculant to attain the desired results of bacterization.  相似文献   
122.
Biomass feedstock having less competition with food crops are desirable for bio-ethanol production and such resources may not be localized geographically. A distributed production strategy is therefore more suitable for feedstock like water hyacinth with a decentralized availability. In this study, we have demonstrated the suitability of this feedstock for production of fermentable sugars using cellulases produced on site. Testing of acid and alkali pretreatment methods indicated that alkali pretreatment was more efficient in making the sample susceptible to enzyme hydrolysis. Cellulase and β-glucosidase loading and the effect of surfactants were studied and optimized to improve saccharification. Redesigning of enzyme blends resulted in an improvement of saccharification from 57% to 71%. A crude trial on fermentation of the enzymatic hydrolysate using the common baker’s yeast Saccharomyces cerevisiae yielded an ethanol concentration of 4.4 g/L.  相似文献   
123.
Most bacteria, including Escherichia coli, lack an enzyme that can phosphorylate deoxycytidine and its analogs. Consequently, most studies of toxicity and mutagenicity of cytosine analogs use ribonucleosides such as 5-azacytidine (AzaC) and zebularine (Zeb) instead of their deoxynucleoside forms, 5-aza-2′-deoxycytidine (AzadC) and 2′-deoxy-zebularine (dZeb). The former analogs are incorporated into both RNA and DNA creating complex physiological responses in cells. To circumvent this problem, we introduced into E. coli the Drosophila deoxynucleoside kinase (Dm-dNK), which has a relaxed substrate specificity, and tested these cells for sensitivity to AzadC and dZeb. We find that Dm-dNK expression increases substantially sensitivity of cells to these analogs and dZeb is very mutagenic in cells expressing the kinase. Furthermore, toxicity of dZeb in these cells requires DNA mismatch correction system suggesting a mechanism for its toxicity and mutagenicity. The fluorescence properties of dZeb were used to quantify the amount of this analog incorporated into cellular DNA of mismatch repair-deficient cells expressing Dm-dNK and the results showed that in a mismatch correction-defective strain a high percentage of DNA bases may be replaced with the analog without long term toxic effects. This study demonstrates that the mechanism by which Zeb and dZeb cause cell death is fundamentally different than the mechanism of toxicity of AzaC and AzadC. It also opens up a new way to study the mechanism of action of deoxycytidine analogs that are used in anticancer chemotherapy.  相似文献   
124.
Organophosphorus compounds (OPs) such as pesticides, fungicides, and herbicides are highly toxic but are nevertheless extensively used worldwide. To detect OPs, we constructed a yeast strain that co-displays organophosphorus hydrolase (OPH) and enhanced green fluorescent protein (EGFP) on the cell surface using a Flo1p anchor system. OP degradation releases protons and causes a change in pH. This pH change results in structural deformation of EGFP, which triggers quenching of its fluorescence, thereby making this cell useful for visual detection of OPs. Fluorescence microscopy confirmed the high-intensity fluorescence displayed by EGFP on the cell surface. The yeast strain possessed sufficient OPH hydrolytic activities for degrading OPs, as measured by incubation with 1 mM paraoxon for 24 h at 30°C. In addition, with 20 mM paraoxon at 30°C, fluorescence quenching of EGFP on the single yeast cell was observed within 40 s in a microchamber chip. These observations suggest that engineered yeast cells are suitable for simultaneous degradation and visual detection of OPs.  相似文献   
125.
Analysis of the retinal defects of a CK2 phosphomimetic variant of E(spl)M8 (M8S159D) and the truncated protein M8* encoded by the E(spl)D allele, suggest that the nonphosphorylated CtD “autoinhibits” repression. We have investigated this model by testing for inhibition (in “trans”) by the CtD fragment in its nonphosphorylated (M8‐CtD) and phosphomimetic (M8SD‐CtD) states. In N+ flies, ectopic M8‐CtD compromises lateral inhibition, i.e., elicits supernumerary bristles as with loss of N signaling. This antimorphic activity of M8‐CtD strongly rescues the reduced eye and/or bristle loss phenotypes that are elicited by ectopic M8SD or wild type M8. Additionally, the severely reduced eye of Nspl/Y; E(spl)D/+ flies is also rescued by M8‐CtD. Rescue is specific to the time and place, the morphogenetic furrow, where “founding” R8 photoreceptors are specified. In contrast, the phosphomimetic M8SD‐CtD that is predicted to be deficient for autoinhibition, exhibits significantly attenuated or negligible activity. These studies provide evidence that autoinhibition by the CtD regulates M8 activity in a phosphorylation‐dependent manner. genesis 48:44–55, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
126.
The present study was aimed at formulating tablets comprising of coating susceptible to microbial enzyme degradation for releasing budesonide in the colon. Tablets prepared by using Avicel® pH 102 as diluent and Eudragit® L100-55 as binder were coated to a weight gain of 10% w/w employing aqueous mixtures containing chitosan (CH) and chondroitin sulfate (CS). The interpolymer complex between CH and CS was characterized using Fourier transform infrared (FTIR) and differential scanning calorimetery (DSC) studies. The tablets were evaluated for release of budesonide through in vitro in vivo studies. Formation of bonds between –COO? and –OSO 3 ? groups of CS and –NH 3 + groups of CH was evident in the FTIR spectra of these interpolymer complexed (IPC) films. The DSC thermograms of these films revealed one endothermic transition between 190°C and 205°C, suggesting the formation of new bonds in the IPC. The pH sensitive swelling exhibited by these films was observed to be a function of CH concentration. Tablets coated with aqueous mixtures containing 40:60 or 50:50 ratio of CH/CS totally prevented the release of budesonide in pH 1.2 buffer. The peaks (FTIR) and endothermic transitions (DSC) characteristic of interpolymer complexation were observed to remain unaffected after sequential exposure of the films to pH 1.2 and pH 7.4 buffer IP. This proved the versatility of these IPC films for colon delivery. C max of 1,168.99 and 1,174.2 ng/mL, respectively, at 12 and 8 h post-oral dosing of tablets coated with 40:60 or 50:50 ratio of CH/CS was observed in rats. The aqueous CH/CS (40:60) coating could provide a facile method for delivering budesonide to the colon.  相似文献   
127.
128.
The accurate identification of HIV-specific T cell responses is important for determining the relationship between immune response, viral control, and disease progression. HIV-specific immune responses are usually measured using peptide sets based on consensus sequences, which frequently miss responses to regions where test set and infecting virus differ. In this study, we report the design of a peptide test set with significantly increased coverage of HIV sequence diversity by including alternative amino acids at variable positions during the peptide synthesis step. In an IFN-gamma ELISpot assay, these "toggled" peptides detected HIV-specific CD4(+) and CD8(+) T cell responses of significantly higher breadth and magnitude than matched consensus peptides. The observed increases were explained by a closer match of the toggled peptides to the autologous viral sequence. Toggled peptides therefore afford a cost-effective and significantly more complete view of the host immune response to HIV and are directly applicable to other variable pathogens.  相似文献   
129.
The pathogenesis of acute pancreatitis is not fully understood. Experimental animal models that mimic human disease are essential to better understand the pathophysiology of the disease and to evaluate potential therapeutic agents. Given that the mouse genome is known completely and that a large number of strains with various genetic deletions are available, it is advantageous to have multiple reliable mouse models of acute pancreatitis. Presently, there is only one predominant model of acute pancreatitis in mice, in which hyperstimulatory doses of cholecystokinin or its analog caerulein are administered. Therefore, the aim of this study was to develop another mouse model of acute pancreatitis. In this study, C57BL/6 mice were injected intraperitoneally with L-arginine in two doses of 4 g/kg each, 1 h apart. Serum amylase, myeloperoxidase, and histopathology were examined at varying time points after injection to assess injury to the pancreas and lung. We found that injection of L-arginine was followed by significant increases in plasma amylase and pancreatic myeloperoxidase accompanied by marked histopathological changes. The injury to the pancreas was slow to develop and peaked at 72 h. Subsequent to peak injury, the damaged areas contained collagen fibers as assessed by increased Sirius red staining. In contrast, D-arginine or other amino acids did not cause injury to the pancreas. In addition, acute inflammation in the pancreas was associated with lung injury. Our results indicate that administration of L-arginine to mice results in severe acute pancreatitis. This model should help in elucidating the pathophysiology of pancreatitis.  相似文献   
130.
Superantigens (SAGs) bind simultaneously to major histocompatibility complex (MHC) and T-cell receptor (TCR) molecules, resulting in the massive release of inflammatory cytokines that can lead to toxic shock syndrome (TSS) and death. A major causative agent of TSS is toxic shock syndrome toxin-1 (TSST-1), which is unique relative to other bacterial SAGs owing to its structural divergence and its stringent TCR specificity. Here, we report the crystal structure of TSST-1 in complex with an affinity-matured variant of its wild-type TCR ligand, human T-cell receptor beta chain variable domain 2.1. From this structure and a model of the wild-type complex, we show that TSST-1 engages TCR ligands in a markedly different way than do other SAGs. We provide a structural basis for the high TCR specificity of TSST-1 and present a model of the TSST-1-dependent MHC-SAG-TCR T-cell signaling complex that is structurally and energetically unique relative to those formed by other SAGs. Our data also suggest that protein plasticity plays an exceptionally significant role in this affinity maturation process that results in more than a 3000-fold increase in affinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号