首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   9篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   10篇
  2018年   9篇
  2017年   6篇
  2016年   7篇
  2015年   8篇
  2014年   6篇
  2013年   8篇
  2012年   5篇
  2011年   4篇
  2010年   8篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2001年   2篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1958年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
61.
ABSTRACT: BACKGROUND: End-stage renal disease (ESRD) patients treated with renal replacement therapy (RRT) have premature immunologically aged T cells which may underlie uremia-associated immune dysfunction. The aim of this study was to investigate whether uremia was able to induce premature ageing of the T cell compartment. For this purpose, we examined the degree of premature immunological T cell ageing by examining the T cell differentiation status, thymic output via T cell receptor excision circle (TREC) content and proliferative history via relative telomere length in ESRD patients not on RRT. RESULTS: Compared to healthy controls, these patients already had a lower TREC content and an increased T cell differentiation accompanied by shorter telomeres. RRT was able to enhance CD8+ T cell differentiation and to reduce CD8+ T cell telomere length in young dialysis patients. An increased differentiation status of memory CD4+ T cells was also noted in young dialysis patients. CONCLUSION: Based on these results we can conclude that uremia already causes premature immunological ageing of the T cell system and RRT further increases immunological ageing of the CD8+ T cell compartment in particular in young ESRD patients.  相似文献   
62.
Environmental laws concerning spent catalysts disposal have become increasingly more severe in recent years. Due to the toxic nature of spent catalysts, their disposal can pollute the environment. The recovery of heavy metals decreases the environmental impact of the waste catalysts and the recycled product can be further used for industrial purposes. Bio-hydrometallurgical approaches, such as bioleaching, appear to offer good prospects for recovering valuable metals from spent refinery catalysts. Currently, identifying and modifying the parameters that influenced the efficiency of bioleaching is important for industrial sector. The biological system can be further improved through optimizing the bioleaching parameters, such as the nutrient culture media, amount of oxygen and carbon dioxide, pH, temperature, inoculum, metal resistance of microorganisms, chemistry of solid waste, particle size of solid waste, solid liquid ratio, bioleaching period, size of substrate, shaking speed, and also the development of more effective bioleaching microorganisms. In our previous review (Asghari et al. in J Ind Eng Chem 19:1069–1081, 2013), information available in the literature on the bioleaching fundamentals of spent catalysts with a focus on recent developments was reviewed in detail. In this study, the effects of most important factors that influence an efficient bioleaching process of spent refinery catalysts with the hope that these valuable and useful data can help determine the most efficient process will be discussed. The details of metals recovery with a focus on the effects of different variables in the bioleaching such as reaction time, pulp density, initial pH, particle size, nutrient concentration, temperature and buffer will also be presented.  相似文献   
63.
Ferrocene‐incorporated selenoureas 1‐(4‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P4Me), 1‐(3‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P3Me), and 1‐(2‐methoxybenzoyl)‐3‐(4‐ferrocenylphenyl)selenourea (P2Me) were synthesized and characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, atomic absorption spectroscopy, CHNS, and single‐crystal X‐ray diffraction. DNA interaction of the compounds was investigated with cyclic voltammetry, UV–visible spectroscopy, and viscometry, which is a prerequisite for anticancer agents. Drug‐DNA binding constant was found to vary in the sequence: KP4Me (4.9000 × 104 M?1) > KP2Me (2.318 × 104 M?1) > KP3Me (1.296 × 104 M?1). Antioxidant (1,1‐diphenyl‐2‐picrylhydrazyl), antifungal (against Faussarium solani and Helmentosporium sativum), and antibacterial (against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis) activities have also been reported in addition.  相似文献   
64.
α-Synuclein becomes misfolded and aggregated upon damage by various factors, for example, by reactive oxygen species. These aggregated forms have been proposed to have differential toxicities and their interaction with mitochondria may cause dysfunction within this organelle that contributes to the pathogenesis of Parkinson''s disease (PD). In particular, the association of α-synuclein with mitochondria occurs through interaction with mitochondrial complex I and importantly defects of this protein have been linked to the pathogenesis of PD. Therefore, we investigated the relationship between aggregated α-synuclein and mitochondrial dysfunction, and the consequences of this interaction on cell survival. To do this, we studied the effects of α-synuclein on cybrid cell lines harbouring mutations in either mitochondrial complex I or IV. We found that aggregated α-synuclein inhibited mitochondrial complex I in control and complex IV-deficient cells. However, when aggregated α-synuclein was applied to complex I-deficient cells, there was no additional inhibition of mitochondrial function or increase in cell death. This would suggest that as complex I-deficient cells have already adapted to their mitochondrial defect, the subsequent toxic effects of α-synuclein are reduced.The pathological hallmark of Parkinson''s disease (PD) is the presence of α-synuclein aggregates, particularly within the substantia nigra (SN). These aggregations take the form of intracellular Lewy bodies, and also neuritic aggregations. However, both the effect of these inclusions on neuronal survival and the toxicity of different forms of α-synuclein are still debated. To aggregate α-synuclein must undergo a conformational change, however, the mechanism behind this change and subsequent aggregation in PD remains to be determined.Mutations within the α-synuclein gene (SNCA (MIM 163890)) were the first to be associated with autosomal dominant PD, while more recently genome-wide association studies have suggested that single-nucleotide polymorphisms in this gene are important for sporadic PD. A widely expressed protein α-synuclein is important for synaptic vesicle recycling and the modulation of dopamine transmission within SN neurons.1, 2, 3, 4, 5, 6, 7, 8 It interacts with curved cellular membranes including those of mitochondria suggesting a possible mode of its toxicity,9, 10, 11 and can be imported into mitochondria in an energy-dependent manner.9 The accumulation of α-synuclein within mitochondria leads to complex I impairment, decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species (ROS) production. The occurrence of these changes is also dependent on calcium homoeostasis.9, 12, 13Mitochondrial dysfunction has also been heavily implicated in the pathogenesis of PD. Early studies showed a decrease in mitochondrial complex I in the SN of PD patients and studies involving the inhibition of this complex replicate many of the features of this disease. In addition, SN neurons show high levels of mitochondrial DNA deletions in old age,14, 15 which lead to respiratory deficiency, and the environment of the SN is believed to be particularly oxidative due to a number of processes, including the metabolism of dopamine. More recently a number of genes known to cause autosomal recessive forms of PD have been shown to encode proteins with functions associated with mitochondrial turnover (Parkin/Pink1 (MIM 602544, MIM 608309)) or oxidative stress (DJ-1 (MIM 602533)). However, the link between these two processes and the loss of dopaminergic neurons in PD remains to be elucidated.Several hypotheses have been suggested for what might cause α-synuclein to undergo the conformational change into more aggregate prone forms, from oxidative stress to gene mutations. Furthermore, the accumulation of mitochondrial DNA (mtDNA) mutations and dysfunctional mitochondria with advancing age are likely to have an effect on oxidative stress levels within the SN, which might contribute further to the misfolding and accumulation of this protein. Numerous studies have used rotenone and other toxins to induce mitochondrial dysfunction and monitor the accumulation of α-synuclein, despite the wealth of information that these studies provide they often do not reflect the subtleties of the slow accumulation of mitochondrial dysfunction within ageing SN neurons.Therefore, we investigated the relationship between mitochondria and aggregated α-synuclein, focussing on how these forms affect neurons with and without mitochondrial dysfunction. We wanted to understand how aggregated α-synuclein impacted on the survival of cells with mitochondrial dysfunction, to enable a deeper understanding of the effect of these two processes on neuronal survival. To investigate this we used cells with mutations in and partial inhibition of complexes I and IV.  相似文献   
65.
Molecular Biology Reports - This study aimed to investigate the association between biocides' reduced susceptibility and the presence of efflux pump genes including cepA, qacEΔ1 and qacE...  相似文献   
66.
The structure of pseudorabies virus (PRV) capsids isolated from the nucleus of infected cells and from PRV virions was determined by cryo-electron microscopy (cryo-EM) and compared to herpes simplex virus type 1 (HSV-1) capsids. PRV capsid structures closely resemble those of HSV-1, including distribution of the capsid vertex specific component (CVSC) of HSV-1, which is a heterodimer of the pUL17 and pUL25 proteins. Occupancy of CVSC on all PRV capsids is near 100%, compared to ~ 50% reported for HSV-1 C-capsids and 25% or less that we measure for HSV-1 A- and B-capsids. A PRV mutant lacking pUL25 does not produce C-capsids and lacks visible CVSC density in the cryo-EM-based reconstruction. A reconstruction of PRV capsids in which green fluorescent protein was fused within the N-terminus of pUL25 confirmed previous studies with a similar HSV-1 capsid mutant localizing pUL25 to the CVSC density region that is distal to the penton. However, comparison of the CVSC density in a 9-Å-resolution PRV C-capsid map with the available crystal structure of HSV-1 pUL25 failed to find a satisfactory fit, suggesting either a different fold for PRV pUL25 or a capsid-bound conformation for pUL25 that does not match the X-ray model determined from protein crystallized in solution. The PRV capsid imaged within virions closely resembles C-capsids with the addition of weak but significant density shrouding the pentons that we attribute to tegument proteins. Our results demonstrate significant structure conservation between the PRV and HSV capsids.  相似文献   
67.
Background  Methanogenesis by methanogenic Archaea and sulfate reduction by sulfate reducing bacteria (SRB) are the major hydrogenotrophic pathways in the human colon. Methanogenic status of mammals is suggested to be under evolutionary rather than dietary control. However, information is lacking regarding the dynamics of hydrogenotrophic microbial communities among different primate species.
Methods  Rectal swabs were collected from 10 sooty mangabeys ( Cercocebus atys ) and 10 baboons ( Papio hamadryas ). The diversity and abundance of methanogens and SRB were examined using PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR).
Results  The DGGE results revealed that intestinal Archaea and SRB communities differ between mangabeys and baboons. Phylogenetic analyses of Archaea DGGE bands revealed two distinct clusters with one representing a putative novel order of methanogenic Archaea. The qPCR detected a similar abundance of methanogens and SRB.
Conclusions  Intestinal Archaea and SRB coexist in these primates, and the community patterns are host species-specific.  相似文献   
68.
69.
Detailed circular dichroism (CD), scattering and quenching studies, 1-anilinonaphthalene-8-sulfonate (ANS) binding, irreversible thermoinactivation, activity measurements and proteolytic digestion of bacterial alpha-amylases have been carried out to elucidate the effect of trifluoroethanol (TFE) on the structure of these enzymes. Under high concentrations of TFE both of the alpha-amylases, a thermostable alpha-amylase from Bacillus licheniformis (BLA) and its mesophilic counterpart from Bacillus amyloliquefaciens (BAA), acquire partially folded state characterized by an enhanced content of the secondary structure (helix) and reduced tertiary structures. According to ANS binding studies, we suggest that the TFE states induced by TFE/water mixture are not the molten globule state in the alpha-amylase folding pathway. In addition, data shows significant reversible aggregation of both enzymes in TFE/water mixtures with concentration between 10 and 60% (v/v). However, reversibility is more in case of BAA. As expected, in the absence of TFE, the thermophilic enzyme compared to mesophilic enzyme, shows a greater resistance to digestion by thermolysin. With respect to fluorescence quenching by acrylamide and potassium iodide, the thermophilic enzyme, BLA, is characterized by higher structural flexibility as compared to the BAA. On the other hand, in the presence of TFE, the enzymes are digested by protease to produce large protein fragments. It is proposed that highly helical secondary structures, acquired by BAA and BLA when dissolved in aqueous TFE, prevent binding and adaptation of the protein substrate at the active site of the protease.  相似文献   
70.
Disturbances in the schedules of gene expression in developing interspecific fish hybrids have been used to draw inferences about the extent of gene regulatory divergence between species and about the degree to which this gene regulatory divergence is correlated with structural gene divergence, as estimated by genetic distance. Sperm from each of 10 different species representing six genera within the family Centrarchidae was used to fertilize eggs of the Florida largemouth bass (Micropterus salmoides floridanus). The genetic distances (D; Nei 1978) between the parental species used to form the hybrids ranged from 0.133 to 0.974. The developmental success and temporal patterns of gene expression of each of the hybrids were compared with those of the Florida largemouth bass. As the genetic distance between the paternal species and the Florida largemouth bass increased, there was a general decline in developmental success in the hybrid embryos as demonstrated by the observed reductions in the percentage of hatching and by progressively earlier and more extensive morphological abnormalities. Concomitantly, progressively more marked alterations in developmental schedules of expression of 15 enzyme loci occurred in the hybrids as the genetic distance between parental species increased. However, observed deviations from this trend for a few species may represent an uncoupling of the rates and modes of evolution of structural genes from those for genes regulating developmental processes.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号