首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   15篇
  2017年   1篇
  2014年   2篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   3篇
  1971年   2篇
  1970年   4篇
  1969年   1篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
排序方式: 共有121条查询结果,搜索用时 31 毫秒
91.
Using the isopiestic vapour pressure technique, the magnitudes of excess binding of water and NaCl per mole of twenty different poly-L-amino acid residues, respectively in the presence of different bulk molefractions (X2) of NaCl have been evaluated from the mathematical expressions for the Gibbs surface excesses. At certain high ranges of NaCl concentration, the plot of -Gamma1 (2) versus X1/X2 becomes linear, so that moles of water and NaCl, respectively bound per mole of amino acid residue can be evaluated. -Gamma(2)1 is the excess moles of H20 per mole of amino acid residue and X1 and X2 stand for mole fractions of the water and NaCl, respectively in the sample system. Also, using the integrated form of the Gibbs absorption equation, the values of standard free energy change (deltaG(0)) for the excess adsorption of NaCl per kg of poly-L-amino acids have been evaluated. These values are all positive as a result of positive excess hydration of polyamino acids. The standard free energy of excess hydration deltaG(0)hy (equal to -deltaG(0)) is negative due to spontaneous excess hydration of polyamino acid in the presence of a salt.  相似文献   
92.
We have found, using a newly developed genetic method, a protein (named Cnu, for oriC-binding nucleoid-associated) that binds to a specific 26-base-pair sequence (named cnb) in the origin of replication of Escherichia coli, oriC. Cnu is composed of 71 amino acids (8.4 kDa) and shows extensive amino acid identity to a group of proteins belonging to the Hha/YmoA family. Cnu was previously discovered as a protein that, like Hha, complexes with H-NS in vitro. Our in vivo and in vitro assays confirm the results and further suggest that the complex formation with H-NS is involved in Cnu/Hha binding to cnb. Unlike the hns mutants, elimination of either the cnu or hha gene did not disturb the growth rate, origin content, and synchrony of DNA replication initiation of the mutants compared to the wild-type cells. However, the cnu hha double mutant was moderately reduced in origin content. The Cnu/Hha complex with H-NS thus could play a role in optimal activity of oriC.  相似文献   
93.
Extent of binding (gammap) of globular proteins to calf-thymus DNA have been measured in mole per mole of nucleotide as function of equilibrium protein concentration. We have exploited measurement of the surface tension of the protein solution in the presence and absence of DNA to calculate the binding ration (gammap). Interaction of bovine serum albumin with DNA has been studied at different pH. Interaction of bovine serum albumin with DNA has been studied at different pH, ionic strength and in presence of Ca2+. Interaction of BSA with denatured DNA has also been investigated. Binding isotherms for other globular proteins like beta-lactoglobulin, alpha-lactalbumin and lysozyme have been compared under identical physicochemical condition. It has been noted with considerable interest that globular form of protein is important to some extent in protein-DNA interaction. An attempt has been made to explain the significance of difference in binding ratios of these two biopolymers in aqueous medium for different systems in the light of electrostatic and hydrophobic effects. Values of maximum binding ration (gammap(m)) at saturated level for different systems have been also presented. The Gibb's free energy decrease (-deltaG0) of the binding of proteins to DNA has been compared more precisely for the saturation of binding sites in the DNA with the change of activity of protein in solution from zero to unity in the rational mole fraction scale.  相似文献   
94.
95.
In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ~30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA.  相似文献   
96.
The origin region of Vibrio cholerae chromosome II (chrII) resembles plasmid origins that have repeated initiator-binding sites (iterons). Iterons are essential for initiation as well as preventing over-initiation of plasmid replication. In chrII, iterons are also essential for initiation but over-initiation is prevented by sites called 39-mers. Both iterons and 39-mers are binding sites of the chrII specific initiator, RctB. Here, we have isolated RctB mutants that permit over-initiation in the presence of 39-mers. Characterization of two of the mutants showed that both are defective in 39-mer binding, which helps to explain their over-initiation phenotype. In vitro, RctB bound to 39-mers as monomers, and to iterons as both monomers and dimers. Monomer binding to iterons increased in both the mutants, suggesting that monomers are likely to be the initiators. We suggest that dimers might be competitive inhibitors of monomer binding to iterons and thus help control replication negatively. ChrII replication was found to be dependent on chaperones DnaJ and DnaK in vivo. The chaperones preferentially improved dimer binding in vitro, further suggesting the importance of dimer binding in the control of chrII replication.  相似文献   
97.
To determine the factors influencing the binding of L1 repressor to its cognate operator DNA, several gel shift as well as bioinformatic analyses have been carried out. The data show that time, temperature, salt, and pH each greatly affect the binding. In order to achieve optimum operator binding of L1 repressor in Tris buffer, the minimum requirements of time, temperature, salt, and pH were estimated to be 1 min, 32 degrees C, NaCl (50 mM), and 7.9, respectively. Interestingly Na+ but not NH4+, K+, or Li+ was found to augment significantly the binding activity of CI protein above the basal level. Anions like Cl-, citrate-, acetate-, and H2PO4- do not alter the binding of L1 repressor to its operator. We also show that an in frame deletion mutant of L1 repressor which does not carry the putative HTH motif (at its N-terminal end) fails to bind to its cognate operator DNA even at very high concentrations. The putative HTH motif was found highly conserved and evolutionarily very close to that of regulatory proteins of Y. pestis, H. marismortui, A. tumefaciens, etc. Taken together we suggest that N-terminal end of L1 repressor carries a HTH motif. Further analysis of the putative secondary structures of mycobacteriophage repressors reveals that two common regions encompassing more than 90% of primary sequence are present in all the four repressor molecules studied here. The results suggest that these common regions are utilized for carrying out identical functions.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号