首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   71篇
  2020年   7篇
  2017年   7篇
  2016年   7篇
  2015年   18篇
  2014年   17篇
  2013年   27篇
  2012年   33篇
  2011年   37篇
  2010年   21篇
  2009年   16篇
  2008年   22篇
  2007年   34篇
  2006年   30篇
  2005年   26篇
  2004年   26篇
  2003年   26篇
  2002年   19篇
  2001年   25篇
  2000年   23篇
  1999年   20篇
  1998年   9篇
  1997年   10篇
  1996年   8篇
  1994年   8篇
  1993年   8篇
  1992年   9篇
  1991年   7篇
  1990年   8篇
  1988年   11篇
  1987年   9篇
  1986年   6篇
  1985年   18篇
  1984年   6篇
  1983年   10篇
  1982年   8篇
  1981年   10篇
  1979年   17篇
  1978年   7篇
  1977年   7篇
  1976年   10篇
  1975年   10篇
  1974年   11篇
  1973年   8篇
  1972年   6篇
  1971年   8篇
  1970年   6篇
  1968年   9篇
  1966年   6篇
  1965年   6篇
  1964年   6篇
排序方式: 共有767条查询结果,搜索用时 296 毫秒
51.
In a contaminated water-table aquifer, we related microbial community structure on aquifer sediments to gradients in 24 geochemical and contaminant variables at five depths, under three recharge conditions. Community amplified ribsosomal DNA restriction analysis (ARDRA) using universal 16S rDNA primers and denaturing gradient gel electrophoresis (DGGE) using bacterial 16S rDNA primers indicated: (i). communities in the anoxic, contaminated central zone were similar regardless of recharge; (ii). after recharge, communities at greatest depth were similar to those in uncontaminated zones; and (iii). after extended lack of recharge, communities at upper and lower aquifer margins differed from communities at the same depths on other dates. General aquifer geochemistry was as important as contaminant or terminal electron accepting process (TEAP) chemistry in discriminant analysis of community groups. The Shannon index of diversity (H) and the evenness index (E), based on DGGE operational taxonomic units (OTUs), were statistically different across community groups and aquifer depths. Archaea or sulphate-reducing bacteria 16S rRNA abundance was not clearly correlated with TEAP chemistry indicative of methanogenesis or sulphate reduction. Eukarya rRNA abundance varied by depth and date from 0 to 13% of the microbial community. This contaminated aquifer is a dynamic ecosystem, with complex interactions between physical, chemical and biotic components, which should be considered in the interpretation of aquifer geochemistry and in the development of conceptual or predictive models for natural attenuation or remediation.  相似文献   
52.

Background

There are now several ways to generate fluorescent fusion proteins by randomly inserting DNA encoding the Green Fluorescent Protein (GFP) into another protein's coding sequence. These approaches can be used to map regions in a protein that are permissive for GFP insertion or to create novel biosensors. While remarkably useful, the current insertional strategies have two major limitations: (1) they only produce one kind, or color, of fluorescent fusion protein and (2) one half of all GFP insertions within the target coding sequence are in the wrong orientation.

Results

We have overcome these limitations by incorporating two different fluorescent proteins coding sequences in a single transposon, either in tandem or antiparallel. Our initial tests targeted two mammalian integral membrane proteins: the voltage sensitive motor, Prestin, and an ER ligand gated Ca2+ channel (IP3R).

Conclusions

These new designs increase the efficiency of random fusion protein generation in one of two ways: (1) by creating two different fusion proteins from each insertion or (2) by being independent of orientation.
  相似文献   
53.
54.
We investigated the contribution of the carboxyl terminus region of the beta1a subunit of the skeletal dihydropyridine receptor (DHPR) to the mechanism of excitation-contraction (EC) coupling. cDNA-transfected beta1 KO myotubes were voltage clamped, and Ca(2+) transients were analyzed by confocal fluo-4 fluorescence. A chimera with an amino terminus half of beta2a and a carboxyl terminus half of beta1a (beta2a 1-287/beta1a 325-524) recapitulates skeletal-type EC coupling quantitatively and was used to generate truncated variants lacking 7 to 60 residues from the beta1a-specific carboxyl terminus (Delta7, Delta21, Delta29, Delta35, and Delta60). Ca(2+) transients recovered by the control chimera have a sigmoidal Ca(2+) fluorescence (DeltaF/F) versus voltage curve with saturation at potentials more positive than +30 mV, independent of external Ca(2+) and stimulus duration. In contrast, the amplitude of Ca(2+) transients expressed by the truncated variants varied with the duration of the pulse, and for Delta29, Delta35, and Delta60, also varied with external Ca(2+) concentration. For Delta7 and Delta21, a 50-ms depolarization produced a sigmoidal DeltaF/F versus voltage curve with a lower than control maximum fluorescence. Moreover, for Delta29, Delta35, and Delta60, a 200-ms depolarization increased the maximum fluorescence and changed the shape of the DeltaF/F versus voltage curve, from sigmoidal to bell-shaped, with a maximum at approximately +30 mV. The change in voltage dependence, together with the external Ca(2+) dependence and additional controls with ryanodine, indicated a loss of skeletal-type EC coupling and the emergence of an EC coupling component triggered by the Ca(2+) current. Analyses of d(DeltaF/F)/dt showed that the rate of cytosolic Ca(2+) increase during the Ca(2+) transient was fivefold faster for the control chimera than for the severely truncated variants (Delta29, Delta35, and Delta60) and was consistent with the kinetics of the DHPR Ca(2+) current. In summary, absence of the beta1a-specific carboxyl terminus (last 29 to 60 residues of the control chimera) results in a loss of the fast component of the Ca(2+) transient, bending of the DeltaF/F versus voltage curve, and emergence of EC coupling triggered by the Ca(2+) current. The studies underscore the essential role of the carboxyl terminus region of the DHPR beta1a subunit in fast voltage dependent EC coupling in skeletal myotubes.  相似文献   
55.
Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) alpha1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR beta1a-subunit. It is unknown whether EC coupling domains present in the beta-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit alpha1S is paired with the heterologous heart/brain DHPR beta2a-subunit. Studies were conducted in primary cultured myotubes from beta1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The beta2a-mediated Ca2+ current recovered in beta1 KO myotubes lacking the endogenous DHPR beta1a-subunit verified formation of the alpha1S/beta1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely beta1 KO and RyR1 KO, beta2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage-dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of beta2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the beta2a-subunit. In beta1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by beta2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing beta1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca2+ current; 3), the voltage dependence of the Ca2+ transient was bell-shaped and the maximum was centered at approximately +30 mV, consistent with the voltage dependence of the Ca2+ current; and 4), Ca2+ currents and Ca2+ transients were fully blocked by nifedipine. The loss in voltage-dependent EC coupling promoted by beta2a was inferred by the drastic reduction in maximal Ca2+ fluorescence at large positive potentials (DeltaF/Fmax) in double dysgenic/beta1 KO myotubes overexpressing the pore mutant alpha1S (E1014K) and beta2a. The data indicate that beta2a, upon interaction with the skeletal pore subunit alpha1S, overrides critical EC coupling determinants present in alpha1S. We propose that the alpha1S/beta pair, and not the alpha1S-subunit alone, controls the EC coupling signal in skeletal muscle.  相似文献   
56.
57.
Due to concerns about a link between variant Creutzfeldt-Jakob disease in humans and similar prion protein-induced disease in cattle, i.e., bovine spongiform encephalopathy (BSE), strict controls are in place to exclude BSE-positive animals and/or specified risk materials including bovine central nervous system (CNS) tissue from the human food chain. However, current slaughter practice, using captive bolt guns, may induce disruption of brain tissues and mobilize CNS tissues into the bovine circulatory system, leading to the dispersion of CNS tissues (including prion proteins) throughout the derived carcass. This project used a marker (antibiotic-resistant) strain of Pseudomonas fluorescens to model the effects of commercial captive bolt stunning procedures on the movement of mobilized CNS material within slaughtered animals and the abattoir environment. The marker organism, introduced by injection through the bolt entry aperture or directly using a cartridge-fired captive bolt, was detected in the slaughter environment immediately after stunning and in the abattoir environment at each subsequent stage of the slaughter-dressing process. The marker organism was also detected on the hands of operatives; on slaughter equipment; and in samples of blood, organs, and musculature of inoculated animals. There were no significant differences between the results obtained by the two inoculation methods (P < 0.05). This study demonstrates that material present in, or introduced into, the CNS of cattle during commercial captive bolt stunning may become widely dispersed across the many animate and inanimate elements of the slaughter-dressing environment and within derived carcasses including meat entering the human food chain.  相似文献   
58.
The role of cytoskeletal elements in gap junction (GJ) assembly has been studied using Novikoff hepatoma cells treated with cytochalasin B (CB) to disrupt actin filaments or with colchicine or nocodazole to disrupt microtubules. After 60 min of cell reaggregation, freeze-fracture was used to evaluate quantitatively the "initiation," "maturation," and "growth" phases of GJ assembly. The development of junctional permeability to fluorescent dyes was also analyzed. The only effects of CB on the structure or permeability of the developing junctions involved an elongation of GJ aggregates and a small decrease in formation plaque areas. Colchicine (but not the inactive form, lumicolchicine) prevented the enhancement of GJ growth by cholesterol, but its effect on basal growth was equivocal. Nocodazole inhibited the growth of GJ, even under basal conditions, without an effect on initiation. Nocodazole also blocked the forskolin-enhanced increase in the growth of GJs and, in living MDCK cells, reduced the movement of transport intermediates containing green fluorescent protein-tagged connexin43. Thus, neither actin filaments nor microtubules appear to restrict GJ assembly by anchoring intramembrane GJ proteins, nor are they absolutely required for functional GJs to form. However, microtubules are necessary for enhanced GJ growth and likely for facilitating connexin trafficking under basal conditions.  相似文献   
59.
Two pilot scale biofiltration systems were constructed and installed at the University College Dublin Research Farm, Lyons Estate. Experimental units consisting of two pens in a 12 pen pig house were sealed off from other pens. Air from each pen was extracted and treated separately in two biofiltration systems. Wood chips larger than 20 mm were selected as the medium for biofiltration system 1, whereas chips of between 10 and 16 mm were used in biofiltration system 2. The moisture content of the media was maintained at 69+/-4% (w.w.b.) using a load cell method. The volumetric loading rates ranged from 769 to 1847 m3 [gas] m(-1) [medium] h(-1) over a 63-day experimental period. Both biofilters reduced odour between 88% and 95%. Ammonia removal efficiencies ranged from 64% to 92% and 69% to 93%, for biofiltration systems 1 and 2, respectively. Sulphur-containing compounds were reduced between 9-66%, and -147-51% across biofiltration systems 1 and 2. The pH of the biofilters' leachate remained between 6 and 8. Pressure drop for biofilter 2 was 16 Pa greater than that of biofilter I at the maximum volumetric loading rate of 1847 m3 [gas] m(-3) [medium] h(-1). It is recommended that a wood chip media particle size greater than 20 mm be used for large scale operation of a biofiltration system on intensive pig production facilities to reduce the development of anaerobic zones and to minimize pressure drop on the system fans.  相似文献   
60.
AIMS: The study aimed to investigate the survival characteristics of Escherichia coli O157:H7 in farm water (FW), and in sterile distilled municipal water (SDW), stored outdoors under field conditions, with or without the addition of faeces (1% w/v), in a farmyard shed and the laboratory at 15 degrees C. METHODS AND RESULTS: Water samples were inoculated with E. coli O157:H7 at 10(3) and 10(6) ml(-1), and sampled over a 31-day period. In FW stored outdoors in a field, E. coli O157:H7 survived for 14 days at temperatures <15 degrees C, at both inoculation levels, while in the laboratory at 15 degrees C, the organism was still detectable at low levels (<1 log10 cfu ml(-1)) after 31 days. The addition of bovine faeces to water outdoors (1% w/v) resulted in survival for 24 days. In SDW inoculated at 10(6) ml(-1) and stored in the laboratory (15 degrees C), only a 2.5 log reduction was observed after 31 days, while the organism could not be detected after 17 days in the field. Preliminary screening of water samples stored outdoors isolated a bacterium which exhibited antimicrobial activity towards E. coli O157:H7. CONCLUSIONS: The survival of E. coli O157:H7 observed in this study illustrates the potential of farm water to act as a vehicle in the transfer of the organism across a herd. SIGNIFICANCE AND IMPACT OF THE STUDY: The difficulty in extrapolating results from controlled laboratory situations to on-farm conditions is also highlighted in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号