首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2070篇
  免费   128篇
  2023年   14篇
  2022年   21篇
  2021年   40篇
  2020年   32篇
  2019年   28篇
  2018年   63篇
  2017年   34篇
  2016年   57篇
  2015年   97篇
  2014年   95篇
  2013年   141篇
  2012年   166篇
  2011年   124篇
  2010年   72篇
  2009年   72篇
  2008年   95篇
  2007年   112篇
  2006年   95篇
  2005年   87篇
  2004年   75篇
  2003年   57篇
  2002年   57篇
  2001年   49篇
  2000年   39篇
  1999年   26篇
  1998年   24篇
  1997年   19篇
  1996年   10篇
  1995年   19篇
  1994年   9篇
  1992年   25篇
  1991年   35篇
  1990年   20篇
  1989年   10篇
  1988年   20篇
  1987年   25篇
  1986年   21篇
  1985年   21篇
  1984年   21篇
  1983年   11篇
  1982年   12篇
  1981年   10篇
  1979年   17篇
  1978年   9篇
  1977年   9篇
  1976年   10篇
  1975年   17篇
  1974年   11篇
  1973年   10篇
  1968年   7篇
排序方式: 共有2198条查询结果,搜索用时 281 毫秒
991.
This study investigated the possible synergistic role of obesity in hypertension-induced cardiac remodeling and its modulation by gemfibrozil treatment in rats. Male Wistar rats were fed a high-fat diet (HFD) for 90 days. Normal rats were subjected to hypertension by partial abdominal aortic constriction (PAAC) for 28 days. In the HFD+PAAC control group, rats on HFD were subjected to PAAC on the 62nd day and were sacrificed on the 90th day. HFD and PAAC individually resulted in significant cardiac hypertrophy and fibrosis along with increased oxidative stress and mean arterial blood pressure (MABP) in rats as evidenced by various morphological, biochemical, and histological parameters. Moreover, the HFD + PAAC control group showed marked cardiac remodeling compared to rats subjected to HFD or PAAC alone. The HFD+gemfibrozil and HFD+PAAC+gemfibrozil groups showed significant reduction in cardiac remodeling along with reduction in oxidative stress and MABP. Hence, it may be concluded that oxidative stress plays a key role in obesity-mediated synergistic effects on induction and progression of PAAC-induced cardiac remodeling, and its deleterious effects could be reversed by gemfibrozil treatment in rats through its antioxidant activity.  相似文献   
992.
With the goal of developing small molecules as novel regulators of signal transduction and apoptosis, a series of tyrphostin-like compounds were synthesized and screened for their activity against MM-1 (multiple myeloma) cells and other cell lines representing this malignancy. Synthesis was completed in solution-phase initially and then adopted to solid-phase for generating a more diverse set of compounds. A positive correlation was noted between compounds capable of inducing apoptosis and their modulation of protein ubiquitination. Further analysis suggested that ubiquitin modulation occurs through inhibition of cellular deubiquitinase activity. Bulky groups on the sidechain near the α,β-unsaturated ketone caused a complete loss of activity, whereas cyclization on the opposite side was tolerated. Theoretical calculations at the B3LYP/LACV3P(??) level were completed on each molecule, and the resulting molecular orbitals and Fukui reactivity values for C(β) carbon were utilized in developing a model to explain the compound activity.  相似文献   
993.
This paper aims to develop methods for quantifying their establishment; using physiological activity (chlorophyll as a growth index and nitrogen-fixing potential as a measure of their biofertilizing capacity), along with evaluation based on DNA fingerprints generated using repeat sequences/palindromes. Time course studies were undertaken in liquid and soil microcosm experiments inoculated with a set of four rhizosphere cyanobacterial strains (BF1 Anabaena sp., BF2 Nostoc sp., BF3 Nostoc sp., BF4 Anabaena sp.). Observations revealed the synergistic effect of three-membered combinations (especially the i.e. BF1 + 2 + 3, 1 + 2 + 4, 1 + 3 + 4) in terms of enhancing chlorophyll and acetylene reducing activity. PCR-based amplification profiles (using short tandemly repetitive repeat (STRR) 1A, STRRmod, and HIPAT sequences) proved discriminative in monitoring the presence of the inoculated cyanobacteria in soil microcosm. Future work is in progress to assess the utility of the selected markers/primers in pot experiments, followed by field-level experiments with crop.  相似文献   
994.
Seaweed cultivation is imperative to augment increasing industrial demand. Ulva fasciata Delile is a potential seaweed for cultivation with applications in food industries. There is a renewed interest in large-scale aquaculture of this species in India due to its envisaged demand in snack food products. In the present study, we have successfully demonstrated the possibility of inducing zoospores in vegetative tissue, effective regeneration and improved growth in this seaweed by manipulating salinity (from 15 to 30 psu) and temperature (from 15 to 35°C). The optimum salinity and temperature requirement for zoospores induction were found to be 15 psu and 25°C, respectively. The quadriflagellate zoospores showed negative phototaxis and the settlement and germination pattern similar to several other green seaweeds. The optimum regeneration (78.53?±?10.05%) was recorded at 25°C and 30 psu salinity. The maximum daily growth rate (16.1?±?0.28%) was at 25°C and 30 psu salinity which corresponded to the field conditions. This method could be further refined at nursery culture to achieve artificial seeding essential for the success of commercial cultivation of this seaweed.  相似文献   
995.
996.
A cellulase free, alkaline, thermo-tolerant pectinase was produced by a novel yeast strain Pseudozyma sp. SPJ using citrus peel as inexpensive carbon source. The crude enzyme showed good prospects in degumming of flax fibers for textile industry. An optimum pectinase dose of 80 U g−1 resulted in reduction of 15 ± 1.92% dry weight of the fibers, releasing maximum galacturonic acid (10825.5 ± 34.2 μg g−1 dry fiber) after the incubation of 6 h. The yeast culture could grow on the flax fibers (as sole carbon source) without addition of any other nutrient and produce good enzyme yield (9235.5 ± 21.51 U g−1 dry fiber). After 12 h incubation of the fibers with the isolated yeast strain, 4471 ± 19.5 μg g−1 dry fiber galacturonic acid was achieved with maximum weight loss of 11 ± 1.2%. This process reduced the amount of chemicals and energy used in conventional methods. It also contributed to enhance fineness and overall quality of the fiber strands. This study is relevant to the textile industry as it provided a fast, economical and eco-friendly method for degumming of flax fibers.  相似文献   
997.
Fibronectin (FN) purified by gelatin affinity chromatography is unstable and undergoes fragmentation. The cleavage has been ascribed to inherent autolytic protease activities as well as co-purified matrix metalloproteinases (MMP). Understanding the mechanism by which the proteolysis of FN occurs is important, because the FN fragments have biological activities that differ from those of intact FN. Having excluded contributions of other plasma-derived proteases, the present experiments demonstrated that cleavage of FN by MMP-2 to distinct fragments occurred in synergy with inherent FN activities. Limited heat treatment of FN at 56 °C for 30 min inactivated the inherent protease activities sharply reducing autolysis of FN in a manner similar to that seen in the presence of serine proteinase inhibitors. Heat treatment did not alter cell attachment to FN, but significantly increased the susceptibility of FN to enzymatic cleavage by MMP-2. The carboxyl-terminal hemopexin-like domain (PEX) of MMP-2 was shown to possess critical exodomain properties required for the interactions of MMP-2 with FN, and FN was cleaved at a significantly reduced rate by an MMP-2 variant with deletion of PEX. Verifying the specificity of interactions, isolated PEX competed FN cleavage by MMP-2 in a concentration-dependent manner. These results have further elucidated the synergistic contributions of inherent autolytic serine protease-like activities and MMP-2 to fragmentation of FN and provide the rationale and basis for modified preparation and handling of FN used in biological research.  相似文献   
998.
Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.  相似文献   
999.
This study was conducted to identify stable resistance to net form of net blotch (NFNB) in spring barley in Moroccan environments. Seedling resistance to NFNB was evaluated by inoculating 336 barley genotypes with two NFNB isolates LDNH04Ptt-19 and TD-10 in the greenhouse. These genotypes were evaluated for adult plant resistance to NFNB under seven environments in Morocco in 2015 and 2016. The disease severity was estimated at GS 77–87 on barley leaves using a double-digit scale. To investigate stability of resistance, 149 barley genotypes were subjected to AMMI analysis. At the seedling stage, differential responses of barley genotypes to different NFNB isolates were identified, whereas genotypes had variable stability to NFNB resistance at the adult stages. Five genotypes, AM-68, AM-95, AM-250, AM-267 and AM-322, were resistant to both NFNB isolates at the seedling stage. There were significant (< .001) effects of genotype (G) and G × E interaction on NFNB severity for barley genotypes at the adult stage. The principal components, IPCA1 and IPCA2, accounted for 48.4% and 18.7% variation for NFNB severity, respectively. The AMMI stability values (ASVs) ranged from 0.01 to 15.5, and fifty-nine barley genotypes had stable responses (ASV ≤ 0.05) across all seven environments. Specifically, two stable genotypes, AM-187 and AM-244, had lower mean NFNB severities across all environments, suggesting a quantitative resistance in these genotypes. Divergent environmental responses of NFNB severity were measured in Sidi El Ayedi 2015 and Sidi Allal Tazi 2016, suggesting that these environments may be suitable to capture resistance to diverse pathotypes. These stable genotypes are valuable resources for introgression of both qualitative resistance and quantitative resistance to NFNB in future.  相似文献   
1000.
Plants associate with communities of microbes (bacteria and fungi) that play critical roles in plant development, nutrient acquisition and oxidative stress tolerance. The major share of plant microbiota is endophytes which inhabit plant tissues and help them in various capacities. In this article, we have reviewed what is presently known with regard to how endophytic microbes interact with plants to modulate root development, branching, root hair formation and their implications in overall plant development. Endophytic microbes link the interactions of plants, rhizospheric microbes and soil to promote nutrient solubilization and further vectoring these nutrients to the plant roots making the soil-plant-microbe continuum. Further, plant roots internalize microbes and oxidatively extract nutrients from microbes in the rhizophagy cycle. The oxidative interactions between endophytes and plants result in the acquisition of nutrients by plants and are also instrumental in oxidative stress tolerance of plants. It is evident that plants actively cultivate microbes internally, on surfaces and in soils to acquire nutrients, modulate development and improve health. Understanding this continuum could be of greater significance in connecting endophytes with the hidden half of the plant that can also be harnessed in applied terms to enhance nutrient acquisition through the development of favourable root system architecture for sustainable production under stress conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号