首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   21篇
  2022年   2篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   7篇
  2015年   14篇
  2014年   15篇
  2013年   18篇
  2012年   24篇
  2011年   15篇
  2010年   13篇
  2009年   17篇
  2008年   17篇
  2007年   18篇
  2006年   16篇
  2005年   20篇
  2004年   16篇
  2003年   10篇
  2002年   29篇
  2001年   6篇
  2000年   11篇
  1999年   10篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   14篇
  1991年   12篇
  1990年   18篇
  1989年   13篇
  1988年   14篇
  1987年   11篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1972年   1篇
  1970年   5篇
  1968年   4篇
排序方式: 共有445条查询结果,搜索用时 203 毫秒
141.
Myeloid leukemia factor 1 (MLF1) was first identified as the leukemic fusion protein NPM-MLF1 generated by the t(3;5)(q25.1;q34) chromosomal translocation. Although MLF1 expresses normally in a variety of tissues including hematopoietic stem cells and the overexpression of MLF1 correlates with malignant transformation in human cancer, little is known about how MLF1 is involved in the regulation of cell growth. Here we show that MLF1 is a negative regulator of cell cycle progression functioning upstream of the tumor suppressor p53. MLF1 induces p53-dependent cell cycle arrest in murine embryonic fibroblasts. This action requires a novel binding partner, subunit 3 of the COP9 signalosome (CSN3). A reduction in the level of CSN3 protein with small interfering RNA abrogated MLF1-induced G1 arrest and impaired the activation of p53 by genotoxic stress. Furthermore, ectopic MLF1 expression and CSN3 knockdown inversely affect the endogenous level of COP1, a ubiquitin ligase for p53. Exogenous expression of COP1 overcomes MLF1-induced growth arrest. These results indicate that MLF1 is a critical regulator of p53 and suggest its involvement in leukemogenesis through a novel CSN3-COP1 pathway.  相似文献   
142.
A peripheral type of tryptophan 5-monooxygenase (EC 1.14.16.4), TPH1, is very unstable in vitro, but the inactivation was reversible and full reactivation occurs upon anaerobic incubation with a high concentration of dithiothreitol (DTT, 15 mM). In this study, distinctive iron requirement of TPH1 was revealed through analysis of the enzyme's inactivation and activation by DTT. For this purpose, all the glasswares, plastics, Sephadex G-25 gels, and reagents including protein solutions had been treated with metal chelators, and apo-TPH was prepared by treatment with EDTA. Apo-TPH thus prepared exclusively required free Fe2+ for its catalytic activity; 10(-8) M was enough under the strict absence of Fe3+ but 10(-12) M was too low. No other metal ions including Fe3+ were effective. It appeared that Fe3+ bound to the enzyme with a higher affinity than Fe2+, resulting in the inactivation. Ascorbate, a non-thiol reducing agent, did not substitute DTT in the activation of TPH1, but enhanced the Fe2+-dependent activity of apo-TPH as effectively as DTT. Thus, the DTT-activation was essentially substituted by preparation of apo-TPH by the EDTA treatment and the assay of apo-TPH in the presence of Fe2+ and ascorbate. The activation of TPH1 by incubation with DTT was accompanied by exposure of 9 sulfhydryls out of the total 10 cysteine residues, but the cleavage of disulfide bonds seemed not to be crucial, even if it occurred. The effect of DTT was substituted by some other sulfhydryls whose structure was analogous to that of commonly used metal chelators. Based on these observations, the following dual roles of DTT are proposed: (1) in the activation of TPH, DTT removes inappropriate bound iron (Fe3+) as a chelator, keeping Fe3+ away from the enzyme's binding site which needs to bind Fe2+ for the catalytic activity, and (2) in both the activation and reaction processes, DTT prevents oxidation of Fe2+ to Fe3+ as a reducing agent.  相似文献   
143.
Aspartame is a widely used artificial sweetener added to many soft beverages and its usage is increasing in health-conscious societies. Upon ingestion, this artificial sweetener produces methanol as a metabolite. In order to examine the possibility of aspartame toxicity, the effects of methanol and its metabolites (formaldehyde and formate) on dissociated rat thymocytes were studied by flow cytometry. While methanol and formate did not affect cell viability in the physiological pH range, formaldehyde at 1–3 mmol/L started to induce cell death. Further increase in formaldehyde concentration produced a dose-dependent decrease in cell viability. Formaldehyde at 1 mmol/L or more greatly reduced cellular content of glutathione, possibly increasing cell vulnerability to oxidative stress. Furthermore, formaldehyde at 3 mmol/L or more significantly increased intracellular concentration of Ca2+([Ca2+]i) in a dose-dependent manner. Threshold concentrations of formaldehyde, a metabolite of methanol, that affected the [Ca2+]iand cellular glutathione content were slightly higher than the blood concentrations of methanol previously reported in subjects administered abuse doses of aspartame. It is suggested that aspartame at abuse doses is harmless to humans. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
144.
Galectins are widely distributed sugar-binding proteins whose basic specificity for beta-galactosides is conserved by evolutionarily preserved carbohydrate-recognition domains (CRDs). Although they have long been believed to be involved in diverse biological phenomena critical for multicellular organisms, in only few a cases has it been proved that their in vivo functions are actually based on specific recognition of the complex carbohydrates expressed on cell surfaces. To obtain clues to understand the physiological roles of diverse members of the galectin family, detailed analysis of their sugar-binding specificity is necessary from a comparative viewpoint. For this purpose, we recently reinforced a conventional system for frontal affinity chromatography (FAC) [J. Chromatogr., B, Biomed. Sci. Appl. 771 (2002) 67-87]. By using this system, we quantitatively analyzed the interactions at 20 degrees C between 13 galectins including 16 CRDs originating from mammals, chick, nematode, sponge, and mushroom, with 41 pyridylaminated (PA) oligosaccharides. As a result, it was confirmed that galectins require three OH groups of N-acetyllactosamine, as had previously been denoted, i.e., 4-OH and 6-OH of Gal, and 3-OH of GlcNAc. As a matter of fact, no galectin could bind to glycolipid-type glycans (e.g., GM2, GA2, Gb3), complex-type N-glycans, of which both 6-OH groups are sialylated, nor Le-related antigens (e.g., Le(x), Le(a)). On the other hand, considerable diversity was observed for individual galectins in binding specificity in terms of (1) branching of N-glycans, (2) repeating of N-acetyllactosamine units, or (3) substitutions at 2-OH or 3-OH groups of nonreducing terminal Gal. Although most galectins showed moderately enhanced affinity for branched N-glycans or repeated N-acetyllactosamines, some of them had extremely enhanced affinity for either of these multivalent glycans. Some galectins also showed particular preference for alpha1-2Fuc-, alpha1-3Gal-, alpha1-3GalNAc-, or alpha2-3NeuAc-modified glycans. To summarize, galectins have evolved their sugar-binding specificity by enhancing affinity to either "branched", "repeated", or "substituted" glycans, while conserving their ability to recognize basic disaccharide units, Galbeta1-3/4GlcNAc. On these bases, they are considered to exert specialized functions in diverse biological phenomena, which may include formation of local cell-surface microdomains (raft) by sorting glycoconjugate members for each cell type.  相似文献   
145.
The vacuolar (H(+))-ATPases (or V-ATPases) are ATP-dependent proton pumps that function to acidify intracellular compartments in eukaryotic cells. This acidification is essential for such processes as receptor-mediated endocytosis, intracellular targeting of lysosomal enzymes, protein processing and degradation and the coupled transport of small molecules. V-ATPases in the plasma membrane of specialized cells also function in such processes as renal acidification, bone resorption and pH homeostasis. Work from our laboratory has focused on the V-ATPases from clathrin-coated vesicles and yeast vacuoles.Structurally, the V-ATPases are composed of two domains: a peripheral complex (V(1)) composed of eight different subunits (A-H) that is responsible for ATP hydrolysis and an integral complex (V(0)) composed of five different subunits (a, d, c, c' and c") that is responsible for proton translocation. Electron microscopy has revealed the presence of multiple stalks connecting the V(1) and V(0) domains, and crosslinking has been used to address the arrangement of subunits in the complex. Site-directed mutagenesis has been employed to identify residues involved in ATP hydrolysis and proton translocation and to study the topology of the 100 kDa a subunit. This subunit has been shown to control intracellular targeting of the V-ATPase and to influence reversible dissociation and coupling of proton transport and ATP hydrolysis.  相似文献   
146.
We report here molecular cloning and expression analysis of the gene for a novel human brain link protein-1 (BRAL1) which is predominantly expressed in brain. The predicted open reading frame of human brain link protein-1 encoded a polypeptide of 340 amino acids containing three protein modules, the immunoglobulin-like fold and proteoglycan tandem repeat 1 and 2 domains, with an estimated mass of 38 kDa. The brain link protein-1 mRNA was exclusively present in brain. When analyzed during mouse development, it was detected solely in the adult brain. Concomitant expression pattern of mRNAs for brain link protein-1 and various lectican proteoglycans in brain suggests a possibility that brain link protein-1 functions to stabilize the binding between hyaluronan and brevican. The human BRAL1 gene contained 7 exons and spanned approximately 6 kb. The entire immunoglobulin-like fold was encoded by a single exon and the proteoglycan tandem repeat 1 and 2 domains were encoded by a single and two exons, respectively. The deduced amino acid sequence of human brain link protein-1 exhibited 45% identity with human cartilage link protein-1 (CRTL1), previously reported as link protein to stabilize aggregates of aggrecan and hyaluronan in cartilage. These results suggest that brain link protein-1 may have distinct function from cartilage link protein-1 and play specific roles, especially in the adult brain.  相似文献   
147.
Y Muto  Y Fukumoto  Y Arata 《Biochemistry》1985,24(23):6659-6665
A proton nuclear magnetic resonance (NMR) study is reported of des-Arg-C3a, which is a 76-residue fragment obtained from the N-terminal portion of the alpha chain of the third component of human complement. A method of carboxypeptidase digestion/difference spectroscopy [Endo, S., & Arata, Y. (1985) Biochemistry 24, 1561-1568] was used for the spectral assignments for Ala-76, Leu-75, Gly-74, His-72, His-67, and Ala-48. On the basis of the NMR results obtained for these residues, we conclude that in aqueous solution (1) the C-terminal segment Leu-73-Ala-76 is free from interactions with the rest of the C3a molecule and (2) the major part of the C-terminal segment takes an ordered conformation. We also suggest that the presence of a core, which is formed by segment Tyr-15-Tyr-59 [Huber, R., Scholze, H., Paques, E. P., & Deisenhofer, J. (1980) Hoppe-Seyler's Z. Physiol. Chem. 361, 1389-1399], is essential for the C-terminal segment in maintaining the ordered structure in aqueous solution. 1H NMR spectral data were also obtained for the intact C3 from human and porcine sources. The resonances for the C2-H protons of His-67 and His-72, which exist in the C3a part of the human C3 molecule, were assigned. Comparisons of the results obtained with those for des-Arg-C3a demonstrate that upon cleavage of C3a very little change, if any, is induced in microenvironments of His-67 and His-72 and a piece of segment that contains His-72 is exposed to solvent and highly flexible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
148.
149.
A rare coniferous Tertiary relict tree species, Thuja sutchuenensis Franch, has survived in the Daba Mountains of southwestern China. It was almost eliminated by logging during the past century. We measured size and age structures and interpreted regeneration dynamics of stands of the species in a variety of topographic contexts and community associations. Forest communities containing T. sutchuenensis were of three types: (1) the Thuja community dominated by T. sutchuenensis, growing on cliffs; (2) the Thuja-Quercus-Cyclobalanopsis community dominated by T. sutchuenensis, Quercus engleriana and Cyclobalanopsis oxyodon, along with Fagus engleriana and Carpinus fargesiana, on steep slopes; (3) the Thuja-Tsuga-Quercus community dominated by T. sutchuenensis, Tsuga chinensis, and Quercus spinosa, on crest ridges. The established seedlings/saplings were found in limestone crevices, on scarred cliff-faces, cliff-edges, fallen logs, canopy gaps and forest margins. The radial growth rate was 0.5-1.1 mm per year. Its growth forms were distorted. It had strong sprouting ability after disturbances. The T. sutchuenensis population thrives on cliffs where there is little competition from other species because of harsh conditions and rockslide disturbances. It is shade-intolerant but stress-tolerant. Its regeneration has depended on natural disturbances.  相似文献   
150.

Background

The rate of decline in forced expiratory volume in 1 second (FEV1) is representative of the natural history of COPD. Sparse information exists regarding the associations between the magnitude of annualised loss of FEV1 with other endpoints.

Methods

Retrospective analysis of UPLIFT® trial (four-year, randomized, double-blind, placebo-controlled trial of tiotropium 18 μg daily in chronic obstructive pulmonary disease [COPD], n = 5993). Decline of FEV1 was analysed with random co-efficient regression. Patients were categorised according to quartiles based on the rate of decline (RoD) in post-bronchodilator FEV1. The St George's Respiratory Questionnaire (SGRQ) total score, exacerbations and mortality were assessed within each quartile.

Results

Mean (standard error [SE]) post-bronchodilator FEV1 increased in the first quartile (Q1) by 37 (1) mL/year. The other quartiles showed annualised declines in FEV1 (mL/year) as follows: Q2 = 24 (1), Q3 = 59 (1) and Q4 = 125 (2). Age, gender, respiratory medication use at baseline and SGRQ did not distinguish groups. The patient subgroup with the largest RoD had less severe lung disease at baseline and contained a higher proportion of current smokers. The percentage of patients with ≥ 1 exacerbation showed a minimal difference from the lowest to the largest RoD, but exacerbation rates increased with increasing RoD. The highest proportion of patients with ≥ 1 hospitalised exacerbation was in Q4 (Q1 = 19.5% [tiotropium], 26% [control]; Q4 = 33.8% [tiotropium] and 33.1% [control]). Time to first exacerbation and hospitalised exacerbation was shorter with increasing RoD. Rate of decline in SGRQ increased in direct proportion to each quartile. The group with the largest RoD had the highest mortality.

Conclusion

Patients can be grouped into different RoD quartiles with the observation of different clinical outcomes indicating that specific (or more aggressive) approaches to management may be needed.

Trial Registration

ClinicalTrials.gov number, NCT00144339  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号