首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   44篇
  2023年   6篇
  2022年   7篇
  2021年   11篇
  2020年   4篇
  2019年   13篇
  2018年   10篇
  2017年   15篇
  2016年   32篇
  2015年   23篇
  2014年   37篇
  2013年   29篇
  2012年   46篇
  2011年   30篇
  2010年   33篇
  2009年   33篇
  2008年   33篇
  2007年   20篇
  2006年   21篇
  2005年   20篇
  2004年   21篇
  2003年   19篇
  2002年   20篇
  2001年   7篇
  2000年   14篇
  1999年   6篇
  1998年   9篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1979年   3篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
排序方式: 共有567条查询结果,搜索用时 118 毫秒
21.
Dispersal and adaptation are the two primary mechanisms that set the range distributions for a population or species. As such, understanding how these mechanisms interact in marine organisms in particular – with capacity for long‐range dispersal and a poor understanding of what selective environments species are responding to – can provide useful insights for the exploration of biogeographic patterns. Previously, the barnacle Notochthamalus scabrosus has revealed two evolutionarily distinct lineages with a joint distribution that suggests an association with one of the two major biogeographic boundaries (~30°S) along the coast of Chile. However, spatial and genomic sampling of this system has been limited until now. We hypothesized that given the strong oceanographic and environmental shifts associated with the other major biogeographic boundary (~42°S) for Chilean coastal invertebrates, the southern mitochondrial lineage would dominate or go to fixation in locations further to the south. We also evaluated nuclear polymorphism data from 130 single nucleotide polymorphisms to evaluate the concordance of the signal from the nuclear genome with that of the mitochondrial sample. Through the application of standard population genetic approaches along with a Lagrangian ocean connectivity model, we describe the codistribution of these lineages through a simultaneous evaluation of coastal lineage frequencies, an approximation of larval behavior, and current‐driven dispersal. Our results show that this pattern could not persist without the two lineages having distinct environmental optima. We suggest that a more thorough integration of larval dynamics, explicit dispersal models, and near‐shore environmental analysis can explain much of the coastal biogeography of Chile.  相似文献   
22.
Interest in the use of corncobs as feedstock for bioethanol production is growing. This study assesses the feasibility of sequential thermochemical diluted sulfuric acid pretreatment of corncobs at moderate temperature to hydrolyze the hemicellulosic fraction, followed by enzymatic hydrolysis of the whole slurry, and fermentation of the obtained syrup. The total sugar concentration after enzymatic hydrolysis was 85.21 g/l, i.e., 86 % of the sugars were liberated from the polymeric fractions, together with a low amount of furfural (0.26 g/l) and 4.01 g/l of acetic acid. The syrups, which contained 36.3, 40.9, 4.47, and 1.84 g/l of xylose, glucose, arabinose, and mannose, respectively, were fermented (pH 7, 37 °C, 150 rpm) to ethanol with the metabolically engineered acetate-tolerant Escherichia coli strain MS04 under non-aerated conditions, producing 35 g/l of ethanol in 18 h (1.94 gEtOH/l/h), i.e., a conversion yield greater than 80 % of the theoretical value based on total sugars was obtained. Hence, using the procedures developed in this study, 288 l of ethanol can be produced per metric ton of dry corncobs. Strain MS04 can ferment sugars in the presence of acetate, and the amount of furans generated during the sequential thermochemical and enzymatic hydrolysis was low; hence, the detoxification step was avoided. The residual salts, acetic acid, and solubilized lignin present in the syrup did not interfere with the production of ethanol by E. coli MS04 and the results show that this strain can metabolize mixtures of glucose and xylose simultaneously.  相似文献   
23.
The potential impact of genetically modified (GM) crops on biodiversity is one of the main concerns in an environmental risk assessment (ERA). The likelihood of outcrossing and pollen‐mediated gene flow from GM crops and non‐GM crops are explained by the same principles and depend primarily on the biology of the species. We conducted a national‐scale study of the likelihood of outcrossing between 11 GM crops and vascular plants in Chile by use of a systematized database that included cultivated, introduced and native plant species in Chile. The database included geographical distributions and key biological and agronomical characteristics for 3505 introduced, 4993 native and 257 cultivated (of which 11 were native and 246 were introduced) plant species. Out of the considered GM crops (cotton, soya bean, maize, grape, wheat, rice, sugar beet, alfalfa, canola, tomato and potato), only potato and tomato presented native relatives (66 species total). Introduced relative species showed that three GM groups were formed having: a) up to one introduced relative (cotton and soya bean), b) up to two (rice, grape, maize and wheat) and c) from two to seven (sugar beet, alfalfa, canola, tomato and potato). In particular, GM crops presenting introduced noncultivated relative species were canola (1 relative species), alfalfa (up to 4), rice (1), tomato (up to 2) and potato (up to 2). The outcrossing potential between species [OP; scaled from ‘very low’ (1) to ‘very high’ (5)] was developed, showing medium OPs (3) for GM–native relative interactions when they occurred, low (2) for GMs and introduced noncultivated and high (4) for the grape‐Vitis vinifera GM–introduced cultivated interaction. This analytical tool might be useful for future ERA for unconfined GM crop release in Chile.  相似文献   
24.
The primary cilium, critical for morphogenic and growth factor signaling, is assembled upon cell cycle exit, but the links between ciliogenesis and cell cycle progression are unclear. KV10.1 is a voltage‐gated potassium channel frequently overexpressed in tumors. We have previously reported that expression of KV10.1 is temporally restricted to a time period immediately prior to mitosis in healthy cells. Here, we provide microscopical and biochemical evidence that KV10.1 localizes to the centrosome and the primary cilium and promotes ciliary disassembly. Interference with KV10.1 ciliary localization abolishes not only the effects on ciliary disassembly, but also KV10.1‐induced tumor progression in vivo. Conversely, upon knockdown of KV10.1, ciliary disassembly is impaired, proliferation is delayed, and proliferating cells show prominent primary cilia. Thus, modulation of ciliogenesis by KV10.1 can explain the influence of KV10.1 expression on the proliferation of normal cells and is likely to be a major mechanism underlying its tumorigenic effects.  相似文献   
25.
26.
In plants, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase (mitHPPK/DHPS) is a bifunctional mitochondrial enzyme, which catalyzes the first two consecutive steps of tetrahydrofolate biosynthesis. Mining the Arabidopsis genome data base has revealed a second gene encoding a protein that lacks a potential transit peptide, suggesting a cytosolic localization of the isoenzyme (cytHPPK/DHPS). When the N-terminal part of the cytHPPK/DHPS was fused to green fluorescent protein, the fusion protein appeared only in the cytosol, confirming the above prediction. Functionality of cytHPPK/DHPS was addressed by two parallel approaches: first, the cytHPPK/DHPS was able to rescue yeast mutants lacking corresponding activities; second, recombinant cytHPPK/DHPS expressed and purified from Escherichia coli displayed both HPPK and DHPS activities in vitro. In contrast to mitHPPK/DHPS, which was ubiquitously expressed, the cytHPPK/DHPS gene was exclusively expressed in reproductive tissue, more precisely in developing seeds as revealed by histochemical analysis of a transgenic cytHPPK/DHPS promoter-GUS line. In addition, it was observed that expression of cytHPPK/DHPS mRNA was induced by salt stress, suggesting a potential role of the enzyme in stress response. This was supported by the phenotype of a T-DNA insertion mutant in the cytHPPK/DHPS gene, resulting in lower germination rates as compared with the wild-type upon application of oxidative and osmotic stress.  相似文献   
27.
Biological Invasions - Genetic diversity can affect population viability and can be reduced by both acute and chronic mechanisms. Using the history of the establishment and management of two...  相似文献   
28.
29.
Hypertension (HTN), i.e. abnormally high blood pressure, is a major risk factor for heart attack, stroke, and kidney failure. The Epithelial Sodium Channel (ENaC), one of the main transporters regulates blood pressure by tightly controlling the sodium reabsorption along the nephron. Recently, we have shown an α-ENaC overexpression in platelets from hypertensive patients compared to platelets from normotensive subjects, suggesting it makes a contribution to the activation state of platelets and the physiopathology of hypertension. However, the involvement of the α-ENaC localized in neutrophils to this disease remains unknown. Neutrophils are the first leukocytes to be recruited to an inflammatory site and are equipped with a strong ability to eliminate intra- or extracellular pathogens using reactive oxygen species or antibacterial proteins contained in their granules.Using the Western blotting (Wb), flow cytometry, and qRT-PCR approaches; we determined α-ENaC neutrophil overexpression at the protein and messenger RNA (mRNA) levels. By confocal and cytometry analysis, we determined the α-ENaC distribution and the heterogeneity of HTN neutrophils population, respectively. Immunoprecipitation and Wb assays demonstrated the presence of both α-ENaC and caveolin-1 phosphorylated forms, compared with neutrophils from healthy individuals. Although neutrophils from hypertensive subjects circulating in an activated state were exhibiting important oxidative stress and modifications registered by confocal, atomic force, and scanning electron microscope, they conserved their defense capabilities. The features described above for neutrophils from hypertensive patients could be attributed to α-ENaC overexpression, as its drug inhibition diminished their activation state modulating the actin cytoskeleton reorganization triggered during the activation process.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号