首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   9篇
  2024年   1篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   4篇
  2012年   17篇
  2011年   12篇
  2010年   9篇
  2009年   5篇
  2008年   10篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  1998年   2篇
  1993年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有126条查询结果,搜索用时 484 毫秒
31.
The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction.  相似文献   
32.

Background

Irritable bowel syndrome (IBS) is largely viewed as a stress-related disorder caused by aberrant brain-gut–immune communication and altered gastrointestinal (GI) homeostasis. Accumulating evidence demonstrates that stress modulates innate immune responses; however, very little is known on the immunological effects of stress on the GI tract. Toll-like receptors (TLRs) are critical pattern recognition molecules of the innate immune system. Activation of TLRs by bacterial and viral molecules leads to activation of NF-kB and an increase in inflammatory cytokine expression. It was our hypothesis that innate immune receptor expression may be changed in the gastrointestinal tract of animals with stress-induced IBS-like symptoms.

Methodology/Principal Findings

In this study, our objective was to evaluate the TLR expression profile in the colonic mucosa of two rat strains that display colonic visceral hypersensivity; the stress-sensitive Wistar-Kyoto (WKY) rat and the maternally separated (MS) rat. Quantitative PCR of TLR2-10 mRNA in both the proximal and distal colonic mucosae was carried out in adulthood. Significant increases are seen in the mRNA levels of TLR3, 4 & 5 in both the distal and proximal colonic mucosa of MS rats compared with controls. No significant differences were noted for TLR 2, 7, 9 & 10 while TLR 6 could not be detected in any samples in both rat strains. The WKY strain have increased levels of mRNA expression of TLR3, 4, 5, 7, 8, 9 & 10 in both the distal and proximal colonic mucosa compared to the control Sprague-Dawley strain. No significant differences in expression were found for TLR2 while as before TLR6 could not be detected in all samples in both strains.

Conclusions

These data suggest that both early life stress (MS) and a genetic predisposition (WKY) to stress affect the expression of key sentinels of the innate immune system which may have direct relevance for the molecular pathophysiology of IBS.  相似文献   
33.
Toxoplasma gondii is a leading cause of congenital birth defects, as well as a cause for ocular and neurological diseases in humans. Its cytoskeleton is essential for parasite replication and invasion and contains many unique structures that are potential drug targets. Therefore, the biogenesis of the cytoskeletal structure of T. gondii is not only important for its pathogenesis, but also of interest to cell biology in general. Previously, we and others identified a new T. gondii cytoskeletal protein, TgMORN1, which is recruited to the basal complex at the very beginning of daughter formation. However, its function remained largely unknown. In this study, we generated a knock-out mutant of TgMORN1 (ΔTgMORN1) using a Cre-LoxP based approach. We found that the structure of the basal complex was grossly affected in ΔTgMORN1 parasites, which also displayed defects in cytokinesis. Moreover, ΔTgMORN1 parasites showed significant growth impairment in vitro, and this translated into greatly attenuated virulence in mice. Therefore, our results demonstrate that TgMORN1 is required for maintaining the structural integrity of the parasite posterior end, and provide direct evidence that cytoskeleton integrity is essential for parasite virulence and pathogenesis.  相似文献   
34.
Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains.  相似文献   
35.
Mild acid degradation of the lipopolysaccharide of the bacterium Idiomarina zobellii, type strain KMM 231T, with aq 2% HOAc at 100 degrees C, yielded an oligosaccharide, which represents one repeating unit of the O-polysaccharide. A polysaccharide was obtained by mild base degradation of the lipopolysaccharide. The following structure of the O-polysaccharide was elucidated by 1H and 13C NMR spectroscopy of the oligosaccharide and base-degraded lipopolysaccharide, including COSY, TOCSY, ROESY, 1H, 13C HSQC, HSQC-TOCSY and HMBC experiments: [-->3)-alpha-D-Quip4N-(1-->4)-alpha-D-GlcpA-(1-->6)-alpha-D-GlcpNAc-(1-->4)-alpha-L-GulpNA-(1-->3)-beta-D-FucpNAc-(1-->] The O-polysaccharide is distinguished by the presence of two unusual amino sugars, 4-amino-4,6-dideoxy-D-glucose (D-Qui4N) and 2-amino-2-deoxy-L-guluronic acid (L-GulNA), both having the free amino group. The unexpectedly high acid lability of the glycosidic linkage of 2-acetamido-2,6-dideoxy-D-galactose (D-FucNAc) could be associated with the presence of a free amino group adjacent to the site of attachment of FucNAc to Qui4N.  相似文献   
36.
Yersiniae are equipped with the Yop virulon, an apparatus that allows extracellular bacteria to deliver toxic Yop proteins inside the host cell cytosol in order to sabotage the communication networks of the host cell or even to cause cell death. LcrG is a component of the Yop virulon involved in the regulation of secretion of the Yops. In this paper, we show that LcrG can bind HeLa cells, and we analyse the role of proteoglycans in this phenomenon. Treatment of the HeLa cells with heparinase I, but not chondroitinase ABC, led to inhibition of binding. Competition assays indicated that heparin and dextran sulphate strongly inhibited binding, but that other glycosaminoglycans did not. This demonstrated that binding of HeLa cells to purified LcrG is caused by heparan sulphate proteoglycans. LcrG could bind directly to heparin-agarose beads and, in agreement with these results, analysis of the protein sequence of Yersinia enterocolitica LcrG revealed heparin-binding motifs. In vitro production and secretion by Y . enterocolitica of the Yops was unaffected by the addition of heparin. However, the addition of exogenous heparin decreased the level of YopE–Cya translocation into HeLa cells. A similar decrease was seen with dextran sulphate, whereas the other glycosaminoglycans tested had no significant effect. Translocation was also decreased by treatment of HeLa cells with heparinitase, but not with chondroitinase. Thus, heparan sulphate proteoglycans have an important role to play in translocation. The interaction between LcrG and heparan sulphate anchored at the surface of HeLa cells could be a signal triggering deployment of the Yop translocation machinery. This is the first report of a eukaryotic receptor interacting with the type III secretion and associated translocation machinery of Yersinia or of other bacteria.  相似文献   
37.
Colonization of the cystic fibrosis lung by Pseudomonas aeruginosa is greatly facilitated by the production of an exopolysaccharide called alginate. In this study we determined the nucleotide sequence of an alginate modification gene, algF, which controls the addition of acetyl groups to alginate. Expression of algF using a T7 promoter-expression system showed that algF codes for a 24.5 kDa polypeptide (predicted size 22 832 Da) that is processed to 19.5 kDa. The N-terminus of the processed polypeptide matched the predicted amino acid sequence of AlgF starting at Asp-29. An algF mutant failed to produce alginate owing to a polar effect on the downstream algA gene. Although the algA gene, provided in trans, restored synthesis of alginate, the alginate was non-acetylated. We show that a plasmid containing both the algF and algA gene complements the alginate acetylation defect of the algF mutant strain.  相似文献   
38.
SUMMARY: Porter is a new system for protein secondary structure prediction in three classes. Porter relies on bidirectional recurrent neural networks with shortcut connections, accurate coding of input profiles obtained from multiple sequence alignments, second stage filtering by recurrent neural networks, incorporation of long range information and large-scale ensembles of predictors. Porter's accuracy, tested by rigorous 5-fold cross-validation on a large set of proteins, exceeds 79%, significantly above a copy of the state-of-the-art SSpro server, better than any system published to date. AVAILABILITY: Porter is available as a public web server at http://distill.ucd.ie/porter/ CONTACT: gianluca.pollastri@ucd.ie.  相似文献   
39.
Adenylate cyclase toxin (CyaA) of Bordetella pertussis belongs to the repeat in toxin family of pore-forming toxins, which require posttranslational acylation to lyse eukaryotic cells. CyaA modulates dendritic cell (DC) and macrophage function upon stimulation with LPS. In this study, we examined the roles of acylation and enzymatic activity in the immunomodulatory and lytic effects of CyaA. The adenylate cyclase activity of CyaA was necessary for its modulatory effects on murine innate immune cells. In contrast, acylation was not essential for the immunomodulatory function of CyaA, but was required for maximal caspase-3 activation and cytotoxic activity. The wild-type acylated toxin (A-CyaA) and nonacylated CyaA (NA-CyaA), but not CyaA with an inactive adenylate cyclase domain (iAC-CyaA), enhanced TLR-ligand-induced IL-10 and inhibited IL-12, TNF-alpha, and CCL3 production by macrophages and DC. In addition, both A-CyaA and NA-CyaA, but not iAC-CyaA, enhanced surface expression of CD80 and decreased CpG-stimulated CD40 and ICAM-1 expression on immature DC. Furthermore, both A-CyaA and NA-CyaA promoted the induction of murine IgG1 Abs, Th2, and regulatory T cells against coadministered Ags in vivo, whereas iAC-CyaA had more limited adjuvant activity. In contrast, A-CyaA and iAC-CyaA induced caspase-3 activation and cell death in macrophages, but these effects were considerably reduced or absent with NA-CyaA. Our findings demonstrate that the enzymatic activity plays a critical role in the immunomodulatory effects of CyaA, whereas acylation facilitates the induction of apoptosis and cell lysis, and as such, NA-CyaA has considerable potential as a nontoxic therapeutic molecule with potent anti-inflammatory properties.  相似文献   
40.

Background

Akkermansia muciniphila and Desulfovibrio spp. are commensal microbes colonising the mucus gel layer of the colon. Both species have the capacity to utilise colonic mucin as a substrate. A. muciniphila degrades colonic mucin, while Desulfovibrio spp. metabolise the sulfate moiety of sulfated mucins. Altered abundances of these microorganisms have been reported in ulcerative colitis (UC). However their capacity to bind to human colonic mucin, and whether this binding capacity is affected by changes in mucin associated with UC, remain to be defined.

Methods

Mucin was isolated from resected colon from control patients undergoing resection for colonic cancer (n = 7) and patients undergoing resection for UC (n = 5). Isolated mucin was purified and printed onto mucin microarrays. Binding of reference strains and three clinical isolates of A. muciniphila and Desulfovibrio spp. to purified mucin was investigated.

Results

Both A. muciniphila and Desulfovibro spp. bound to mucin. The reference strain and all clinical isolates of A. muciniphila showed increased binding capacity for UC mucin (p < .005). The Desulfovibrio reference strain showed increased affinity for UC mucin. The mucin binding profiles of clinical isolates of Desulfovibrio spp. were specific to each isolate. Two isolates showed no difference in binding. One UC isolate bound with increased affinity to UC mucin (p < .005).

Conclusion

These preliminary data suggest that differences exist in the mucin binding capacity of isolates of A. muciniphila and Desulfovibrio spp. This study highlights the mucin microarray platform as a means of studying the ability of bacteria to interact with colonic mucin in health and disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号