首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1252篇
  免费   84篇
  国内免费   1篇
  2023年   8篇
  2022年   19篇
  2021年   39篇
  2020年   28篇
  2019年   27篇
  2018年   34篇
  2017年   26篇
  2016年   41篇
  2015年   48篇
  2014年   75篇
  2013年   87篇
  2012年   87篇
  2011年   97篇
  2010年   63篇
  2009年   44篇
  2008年   52篇
  2007年   52篇
  2006年   44篇
  2005年   48篇
  2004年   33篇
  2003年   28篇
  2002年   25篇
  2001年   29篇
  2000年   22篇
  1999年   22篇
  1998年   9篇
  1996年   9篇
  1994年   8篇
  1992年   15篇
  1991年   9篇
  1990年   10篇
  1989年   10篇
  1988年   12篇
  1987年   7篇
  1986年   12篇
  1985年   6篇
  1984年   12篇
  1983年   7篇
  1982年   9篇
  1981年   5篇
  1980年   8篇
  1979年   13篇
  1978年   11篇
  1977年   7篇
  1976年   7篇
  1975年   8篇
  1974年   5篇
  1973年   10篇
  1972年   6篇
  1969年   5篇
排序方式: 共有1337条查询结果,搜索用时 171 毫秒
131.
Dutta K  Shi H  Cruz-Chu ER  Kami K  Ghose R 《Biochemistry》2004,43(25):8094-8106
An analysis of the backbone dynamics of the C-terminal Src homology 3 (SH3) domain of p67(phox), p67(phox)SH3(C), in complex with a 32-residue high-affinity (K(d) = 24 nM) peptide, Pf, from the C-terminal region of p47(phox) is presented. This paper represents the first detailed analysis of the backbone dynamics and the ligand-induced changes therein of a high-affinity, high-specificity interaction involving an SH3 domain. The dynamic features are compared with those in the high-affinity, highly specific interaction between the SH3 domain of C-terminal Src kinase (Csk-SH3) and a proline-rich peptide from proline-enriched phosphatase (PEP). Both systems share common dynamic features especially in the canonical PxxP motif recognition surface where slow micro- to millisecond time scale dynamics persist on complex formation especially in several residues that are implicated in ligand recognition and in stabilizing the SH3 fold. These residues are highly conserved in SH3 domains. Ile505, which lies outside the PxxP recognition motif on p67(phox)SH3(C) and is key in conferring high specificity to the p67(phox)SH3(C)/Pf interaction, becomes more disordered upon complex formation. This behavior is similar to that seen in the residues that constitute the specificity surface in Csk-SH3.  相似文献   
132.
The full length, positive-strand genome of the Moloney Murine Leukemia Virus contains a "core encapsidation signal" that is essential for efficient genome packaging during virus assembly. We have determined the structure of a 101-nucleotide RNA that contains this signal (called mPsi) using a novel isotope-edited NMR approach. The method is robust and should be generally applicable to larger RNAs. mPsi folds into three stem loops, two of which (SL-C and SL-D) co-stack to form an extended helix. The third stem loop (SL-B) is connected to SL-C by a flexible, four-nucleotide linker. The structure contains five mismatched base-pairs, an unusual C.CG base-triple platform, and a novel "A-minor K-turn," in which unpaired adenosine bases A340 and A341 of a GGAA bulge pack in the minor groove of a proximal stem, and a bulged distal uridine (U319) forms a hydrogen bond with the phosphodiester of A341. Phylogenetic analyses indicate that these essential structural elements are conserved among the murine C-type retroviruses.  相似文献   
133.
We describe an in-cell NMR-based method for mapping the structural interactions (STINT-NMR) that underlie protein-protein complex formation. This method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring their interactions using in-cell NMR spectroscopy. The resulting NMR data provide a complete titration of the interaction and define structural details of the interacting surfaces at atomic resolution. Unlike the case where interacting proteins are simultaneously overexpressed in the labeled medium, in STINT-NMR the spectral complexity is minimized because only the target protein is labeled with NMR-active nuclei, which leaves the interactor protein(s) cryptic. This method can be combined with genetic and molecular screens to provide a structural foundation for proteomic studies. The protocol takes 4 d from the initial transformation of the bacterial cells to the acquisition of the NMR spectra.  相似文献   
134.
To determine the role of superoxide (O(2)(-)) formation in the kidney during alterations in the renin-angiotensin system, we evaluated responses to the intra-arterial infusion of an O(2)(-) - scavenging agent, tempol, in the denervated kidney of anesthetized salt-depleted (SD, n=6) dogs and salt-replete (SR, n=6) dogs. As expected, basal plasma renin activity was higher in SD than in SR dogs (8.4 +/- 1.0 vs. 2.3 +/- 0.6 ng angiotensin 1/ml/hr). Interestingly, the basal level of urinary F(2)-isoprostanes excretion (marker for endogenous O(2)(-) activity) relative to creatinine (Cr) excretion was also significantly higher in SD compared to SR dogs (9.1 +/- 2.8 vs. 1.6 +/- 0.4 ng F(2)-isoprostanes/mg of Cr). There was a significant increase in renal blood flow (4.3 +/- 0.5 to 4.9 +/- 0.6 ml/min/g) and decreases in renal vascular resistance (38.2 +/- 5.8 to 33.2 +/- 4.7 mm Hg/ml/min/g) and mean systemic arterial pressure (148 +/- 6 to 112 +/- 10 mm Hg) in SD dogs but not in SR dogs during infusion of tempol at 1 mg/kg/min for 30 mins. Glomerular filtration rate and urinary sodium excretion (U(Na)V) did not change significantly during tempol infusion in both groups of dogs. Administration of the nitric oxide synthase inhibitor nitro-L-arginine (50 mug/kg/min) during tempol infusion caused a reduction in U(Na)V in SR dogs (47% +/- 12%) but did not cause a decrease in SD dogs. These data show that low salt intake enhances O(2)(-) activity that influences renal and systemic hemodynamics and thus may contribute to the regulation of arterial pressure in the salt-restricted state.  相似文献   
135.
The present study describes the assimilation of phenanthrene by an aerobic bacterium, Ochrobactrum sp. strain PWTJD, isolated from municipal waste-contaminated soil sample utilizing phenanthrene as a sole source of carbon and energy. The isolate was identified as Ochrobactrum sp. based on the morphological, nutritional and biochemical characteristics as well as 16S rRNA gene sequence analysis. A combination of chromatographic analyses, oxygen uptake assay and enzymatic studies confirmed the degradation of phenanthrene by the strain PWTJD via 2-hydroxy-1-naphthoic acid, salicylic acid and catechol. The strain PWTJD could also utilize 2-hydroxy-1-naphthoic acid and salicylic acid, while the former was metabolized by a ferric-dependent meta-cleavage dioxygenase. In the lower pathway, salicylic acid was metabolized to catechol and was further degraded by catechol 2,3-dioxygenase to 2-hydroxymuconoaldehyde acid, ultimately leading to tricarboxylic acid cycle intermediates. This is the first report of the complete degradation of a polycyclic aromatic hydrocarbon molecule by Gram-negative Ochrobactrum sp. describing the involvement of the meta-cleavage pathway of 2-hydroxy-1-naphthoic acid in phenanthrene assimilation.  相似文献   
136.
In this study an attempt was made to evaluate the qualitative and quantitative fungal burden (load) in five different working environments of South Assam (India) and the possible risks of indoor fungi to employees and stored products. Fungal concentrations in different working environments were studied using a Burkard personal petriplate sampler. The survey was done in five different working environments for one year. A total of 76 fungal types were recorded in the indoor air of South Assam during the survey period. The maximum fungal concentration (5,437.6 ± 145.3 CFU m−3 air) was recorded in the indoor air of medical wards, followed by the paper-processing industry (3,871.7 ± 93.4 CFU m−3 air). However the lowest concentration was observed in the indoor air of a bakery (1,796.8 ± 54.4 CFU m−3 air). The most dominant fungal genera were Aspergillus (34.2%) followed by Penicillium (17.8%), Geotrichum (7.0%) and the most dominant fungal species were Aspergillus fumigatus (2,650.4 CFU m−3 air) followed by Aspergillus flavus (1,388.2 CFU m−3 air), Geotrichum candidum (1,280.3 CFU m−3 air), Aspergillus niger (783.3 CFU m−3 air), and Penicillium aurantiovirens (774.0 CFU m−3 air). The fungal species viz., Aspergillus fumigatus, Penicillium aurantiovirens, Aspergillus flavus, Aspergillus niger, Geotrichum candidum, and Penicillium thomii, which were recorded well above threshold levels, may lead to adverse health hazards to indoor workers. Setting occupational exposure limits for indoor fungal spores as reference values is obligatory for prevention and control of adverse effects of indoor fungal exposure.  相似文献   
137.
Rotavirus (RV) diarrhoea causes huge number deaths in children less than 5 years of age. In spite of available vaccines, it has been difficult to combat RV due to large number of antigenically distinct genotypes, high mutation rates, generation of reassortant viruses due to segmented genome. RV is an eukaryotic virus which utilizes host cell machinery for its propagation. Since RV only encodes 12 proteins, post-translational modification (PTM) is important mechanism for modification, which consequently alters their function. A single protein exhibiting different functions in different locations or in different subcellular sites, are known to be 'moonlighting'. So there is a possibility that viral proteins moonlight in separate location and in different time to exhibit diverse cellular effects. Based on the primary sequence, the putative behaviour of proteins in cellular environment can be predicted, which helps to classify them into different functional families with high reliability score. In this study, sites for phosphorylation, glycosylation and SUMOylation of the six RV structural proteins (VP1, VP2, VP3, VP4, VP6 & VP7) & five non-structural proteins (NSP1, NSP2,NSP3,NSP4 & NSP5) and the functional families were predicted. As NSP6 is a very small protein and not required for virus growth & replication, it was not included in the study. Classification of RV proteins revealed multiple putative functions of each structural protein and varied number of PTM sites, indicating that RV proteins may also moonlight depending on requirements during viral life cycle. Targeting the crucial PTM sites on RV structural proteins may have implications in developing future anti-rotaviral strategies.  相似文献   
138.
Due to the inherent immune evasion properties of the HIV envelope, broadly neutralizing HIV-specific antibodies capable of suppressing HIV infection are rarely produced by infected individuals. We examined the feasibility of utilizing genetic engineering to circumvent the restricted capacity of individuals to endogenously produce broadly neutralizing HIV-specific antibodies. We constructed a single lentiviral vector that encoded the heavy and light chains of 2G12, a broadly neutralizing anti-HIV human antibody, and that efficiently transduced and directed primary human B cells to secrete 2G12. To evaluate the capacity of this approach to provide protection from in vivo HIV infection, we used the humanized NOD/SCID/γcnull mouse model, which becomes populated with human B cells, T cells, and macrophages after transplantation with human hematopoietic stem cells (hu-HSC) and develops in vivo infection after inoculation with HIV. The plasma of the irradiated NOD/SCID/γcnull mice transplanted with hu-HSC transduced with the 2G12-encoding lentivirus contained 2G12 antibody, likely secreted by progeny human lymphoid and/or myeloid cells. After intraperitoneal inoculation with high-titer HIV-1JR-CSF, mice engrafted with 2G12-transduced hu-HSC displayed marked inhibition of in vivo HIV infection as manifested by a profound 70-fold reduction in plasma HIV RNA levels and an almost 200-fold reduction in HIV-infected human cell numbers in mouse spleens, compared to control hu-HSC-transplanted NOD/SCID/γcnull mice inoculated with equivalent high-titer HIV-1JR-CSF. These results support the potential efficacy of this new gene therapy approach of using lentiviral vectors encoding a mixture of broadly neutralizing HIV antibodies for the treatment of HIV infection, particularly infection with multiple-drug-resistant isolates.While broadly neutralizing human immunodeficiency virus (HIV)-specific antibodies have the capacity to prevent or suppress HIV infection, they are rarely produced by infected individuals, thereby markedly compromising the ability of the humoral response to control HIV infection (reviewed in reference 28). The high degree of sequence variability in the gp120 structure limits the number of highly conserved epitopes available for targeting by neutralizing antibodies (40). In addition, HIV utilizes several mechanisms to shield the limited number of conserved neutralizing epitopes from the potentially potent antiviral effects of HIV envelope-specific antibodies (14). First, the envelope protein is heavily glycosylated, and the linkage of the most immunoreactive envelope peptide structures to poorly immunogenic glycans shields them from antibody binding (37). Second, exposure of neutralizing epitopes not protected from antibody binding by glycosylation is greatly reduced by trimerization of the gp120-gp41 structure (5). Third, susceptibility of other neutralizing epitopes to antibodies is greatly reduced by limiting their accessibility to antibody binding to the brief transient phase of conformational changes that occur only during binding of the envelope protein to its cellular receptors, CD4 and CCR5 or CXCR4 (41). These intrinsic structural features of gp120 greatly reduce the capacity of natural HIV infection or vaccination to generate broadly neutralizing antibodies able to prevent or control infection. Despite these constraints, rare human antibodies with broad anti-HIV neutralizing activity, i.e., 2G12, b12, 2F5, and 4E10, have been isolated (2).The capacity of passive immunization with neutralizing antibodies to prevent infection was suggested by challenge studies demonstrating that transferred neutralizing antibodies protected monkeys from infection by simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) (15). These studies were extended to humans, including several studies that examined the effect of passive immunotherapy using 2G12, 2F5, and 4E10 on inhibition of HIV replication in infected individuals (20). Passive immunotherapy with a triple combination of 2G12, 2F5, and 4E10 delayed viral rebound after the cessation of highly active antiretroviral therapy (HAART), and activity of 2G12 was critical for inhibitory activity by this antibody combination (18). The key role of 2G12 in suppressing HIV replication was supported by the development of viral rebound in parallel with the emergence of HIV isolates resistant to neutralization by 2G12 (19).While HIV infection may be controlled by the lifelong treatment of HIV-infected individuals with periodic infusions of neutralizing-antibody cocktails every few weeks, this is not a practical or cost-effective therapeutic approach. Eliciting these antibodies by vaccination has not been successful. Therefore, we investigated whether we could circumvent the mechanisms that limit the endogenous production of broadly neutralizing HIV-specific antibodies using a molecular genetic approach to generate B cells that secrete these protective antibodies. In a proof-of-concept study, we examined the capacity of a single lentiviral vector to express the heavy and light chains of the 2G12 antibody, a well-studied anti-HIV human antibody that has broad neutralizing activity both against T cell line-adapted and primary HIV isolates (31). The 2G12 antibody was generated by applying murine/human xenohybridoma technology to establish human hybridoma cell lines from B cells isolated from HIV-infected individuals (16), and it targets the high-mannose and/or hybrid glycans of residues 295, 332, and 392 and peripheral glycans from residues 386 and 448 on gp120. In the current study we demonstrated that a lentiviral vector encoding the heavy and light chains of the 2G12 antibody reprogrammed B cells in vitro to secrete 2G12 with functional neutralizing activity. Furthermore, we demonstrated that the 2G12 lentiviral vector genetically modified human hematopoietic stem cells (hu-HSC), enabling them to differentiate in vivo into progeny cells that secreted 2G12 antibody that inhibited the development of in vivo HIV infection in humanized mice.  相似文献   
139.
A proximo-distal gradient of reduced glutathione (GSH), a non enzymatic antioxidant was observed in the original tails of the lizard, H. leschenaultii. In the regenerating tails, a gradual increase in the level of GSH was noted with tail elongation. In the newly regenerated tails also the level of GSH remained higher in the proximal part than the corresponding distal parts.  相似文献   
140.
Oxidative stress has been shown to alter cellular redox status in various cell types. Changes in expressions of several antioxidative and antistress-responsive genes along with activation or inactivation of various proteins were also reported during oxidative insult as well as during nitrosative stress. In the present study, we show the effect of nitrosative stress on cellular redox status of fission yeast Schizosaccharomyces pombe. This is the first report of S-nitrosoglutathione (GSNO) reductase activity in S. pombe and its inactivation by GSNO. We also show the inactivation of glutathione reductase (GR) and glutathione peroxidase in the presence of various reactive nitrogen species in vivo. In addition, we first observe the inactivation of GR by peroxynitrite in vivo using S. pombe cells and also similar observations under in vitro conditions. An immunoreactive band against monoclonal anti-3-nitrotyrosine antibody confirms the modification of GR under in vitro conditions. We also show the effect of nitrosative stress on Deltapap1 cells of S. pombe, which are more sensitive to nitrosative stress, indicating the involvement of Pap1 in the protection against nitrosative stress. Finally, exposure of S. pombe cells to reactive nitrogen species reveals an important role of cellular thiol pool in protection against nitrosative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号