首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   11篇
  2023年   2篇
  2021年   9篇
  2019年   2篇
  2018年   12篇
  2017年   9篇
  2016年   10篇
  2015年   13篇
  2014年   13篇
  2013年   24篇
  2012年   24篇
  2011年   24篇
  2010年   13篇
  2009年   5篇
  2008年   12篇
  2007年   9篇
  2006年   8篇
  2005年   4篇
  2004年   12篇
  2003年   6篇
  2002年   8篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
排序方式: 共有224条查询结果,搜索用时 265 毫秒
31.
Sorghum (Sorghum bicolor L. Moench) is a rapidly emerging high biomass feedstock for bioethanol and lignocellulosic biomass production. The robust varietal germplasm of sorghum and its completed genome sequence provide the necessary genetic and molecular tools to study and engineer the biotic/abiotic stress tolerance. Traditional proteomics approaches for outlining the sorghum proteome have many limitations like, demand for high protein amounts, reproducibility and identification of only few differential proteins. In this study, we report a gel-free, quantitative proteomic method for in-depth coverage of the sorghum proteome. This novel method combining phenol extraction and methanol chloroform precipitation gives high total protein yields for both mature sorghum root and leaf tissues. We demonstrate successful application of this method in comparing proteomes of contrasting cultivars of sorghum, at two different phenological stages. Protein identification and relative quantification analyses were performed by a label-free liquid chromatography tandem mass spectrometry (LC/MS-MS) analyses. Several unique proteins were identified respectively from sorghum tissues, specifically 271 from leaf and 774 from root tissues, with 193 proteins common in both tissues. Using gene ontology analysis, the differential proteins identified were finely corroborated with their leaf/root tissue specific functions. This method of protein extraction and analysis would contribute substantially to generate in-depth differential protein data in sorghum as well as related species. It would also increase the repertoire of methods uniquely suited for gel-free plant proteomics that are increasingly being developed for studying abiotic and biotic stress responses.  相似文献   
32.
The progressive myoclonic epilepsy of Lafora or Lafora disease (LD) is a neurodegenerative disorder characterized by recurrent seizures and cognitive deficits. With typical onset in the late childhood or early adolescence, the patients show progressive worsening of the disease symptoms, leading to death in about 10 years. It is an autosomal recessive disorder caused by the loss-of-function mutations in the EPM2A gene, coding for a protein phosphatase (laforin) or the NHLRC1 gene coding for an E3 ubiquitin ligase (malin). LD is characterized by the presence of abnormally branched water insoluble glycogen inclusions known as Lafora bodies in the neurons and other tissues, suggesting a role for laforin and malin in glycogen metabolic pathways. Mouse models of LD, developed by targeted disruption of the Epm2a or Nhlrc1 gene, recapitulated most of the symptoms and pathological features as seen in humans, and have offered insight into the pathomechanisms. Besides the formation of Lafora bodies in the neurons in the presymptomatic stage, the animal models have also demonstrated perturbations in the proteolytic pathways, such as ubiquitin-proteasome system and autophagy, and inflammatory response. This review attempts to provide a comprehensive coverage on the genetic defects leading to the LD in humans, on the functional properties of the laforin and malin proteins, and on how defects in any one of these two proteins result in a clinically similar phenotype. We also discuss the disease pathologies as revealed by the studies on the animal models and, finally, on the progress with therapeutic attempts albeit in the animal models.  相似文献   
33.
34.
Clinical trials using human Mesenchymal Stem Cells (MSCs) have shown promising results in the treatment of various diseases. Different tissue sources, such as bone marrow, adipose tissue, dental pulp and umbilical cord, are being routinely used in regenerative medicine. MSCs are known to reduce increased oxidative stress levels in pathophysiological conditions. Differences in the ability of MSCs from different donors and tissues to ameliorate oxidative damage have not been reported yet. In this study, for the first time, we investigated the differences in the reactive oxygen species (ROS) reduction abilities of tissue-specific MSCs to mitigate cellular damage in oxidative stress. Hepatic Stellate cells (LX-2) and cardiomyocytes were treated with Antimycin A (AMA) to induce oxidative stress and tissue specific MSCs were co-cultured to study the reduction in ROS levels. We found that both donor’s age and source of tissue affected the ability of MSCs to reduce increased ROS levels in damaged cells. In addition, the abilities of same MSCs differed in LX-2 and cardiomyocytes in terms of magnitude of reduction of ROS, suggesting that the type of recipient cells should be kept in consideration when using MSCs in regenerative medicine for treatment purposes.  相似文献   
35.
Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer‐by‐layer self‐assembly technique and photolithography offer a simple, versatile, and silicon compatible approach that overcomes chemical surface patterning limitations, such as short‐term stability and low‐protein adsorption resistance. In this study, direct photolithographic patterning of two types of multilayers, PAA (poly acrylic acid)/PAAm (poly acryl amide) and PAA/PAH (poly allyl amine hydrochloride), were developed to pattern mammalian neuronal, skeletal, and cardiac muscle cells. For all studied cell types, PAA/PAAm multilayers behaved as a cytophobic surface, completely preventing cell attachment. In contrast, PAA/PAH multilayers have shown a cell‐selective behavior, promoting the attachment and growth of neuronal cells (embryonic rat hippocampal and NG108‐15 cells) to a greater extent, while providing little attachment for neonatal rat cardiac and skeletal muscle cells (C2C12 cell line). PAA/PAAm multilayer cellular patterns have also shown a remarkable protein adsorption resistance. Protein adsorption protocols commonly used for surface treatment in cell culture did not compromise the cell attachment inhibiting feature of the PAA/PAAm multilayer patterns. The combination of polyelectrolyte multilayer patterns with different adsorbed proteins could expand the applicability of this technology to cell types that require specific proteins either on the surface or in the medium for attachment or differentiation, and could not be patterned using the traditional methods. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
36.
37.
FK506 binding proteins (FKBPs), also called immunophilins, are prolyl-isomerases (PPIases) that participate in a wide variety of cellular functions including hormone signaling and protein folding. Recent studies indicate that proteins that contain PPIase activity can also alter the processing of Alzheimer''s Amyloid Precursor Protein (APP). Originally identified in hematopoietic cells, FKBP52 is much more abundantly expressed in neurons, including the hippocampus, frontal cortex, and basal ganglia. Given the fact that the high molecular weight immunophilin FKBP52 is highly expressed in CNS regions susceptible to Alzheimer''s, we investigated its role in Aβ toxicity. Towards this goal, we generated Aβ transgenic Drosophila that harbor gain of function or loss of function mutations of FKBP52. FKBP52 overexpression reduced the toxicity of Aβ and increased lifespan in Aβ flies, whereas loss of function of FKBP52 exacerbated these Aβ phenotypes. Interestingly, the Aβ pathology was enhanced by mutations in the copper transporters Atox1, which interacts with FKBP52, and Ctr1A and was suppressed in FKBP52 mutant flies raised on a copper chelator diet. Using mammalian cultures, we show that FKBP52 (−/−) cells have increased intracellular copper and higher levels of Aβ. This effect is reversed by reconstitution of FKBP52. Finally, we also found that FKBP52 formed stable complexes with APP through its FK506 interacting domain. Taken together, these studies identify a novel role for FKBP52 in modulating toxicity of Aβ peptides.  相似文献   
38.
Nemo-like kinase (NLK) is a member of the mitogen-activated protein kinase family of kinases and shares a highly conserved kinase domain with other mitogen-activated protein kinase family members. The activation of NLK contributes to the pathogenesis of Diamond–Blackfan anemia (DBA), reducing c-myb expression and mechanistic target of rapamycin activity, and is therefore a potential therapeutic target. Unlike other anemias, the hematopoietic effects of DBA are largely restricted to the erythroid lineage. Mutations in ribosomal genes induce ribosomal insufficiency and reduced protein translation, dramatically impacting early erythropoiesis in the bone marrow of patients with DBA. We sought to identify compounds that suppress NLK and increases erythropoiesis in ribosomal insufficiency. We report that the active component of ginseng, ginsenoside Rb1, suppresses NLK expression and improves erythropoiesis in in vitro models of DBA. Ginsenoside Rb1–mediated suppression of NLK occurs through the upregulation of miR-208, which binds to the 3′-UTR of NLK mRNA and targets it for degradation. We also compare ginsenoside Rb1–mediated upregulation of miR-208 with metformin-mediated upregulation of miR-26. We conclude that targeting NLK expression through miRNA binding of the unique 3′-UTR is a viable alternative to the challenges of developing small-molecule inhibitors to target the highly conserved kinase domain of this specific kinase.  相似文献   
39.
Antibiotic resistance in microbial communities reflects a combination of processes operating at different scales. In this work, we investigate the spatiotemporal dynamics of bacterial colonies comprised of drug-resistant and drug-sensitive cells undergoing range expansion under antibiotic stress. Using the opportunistic pathogen Enterococcus faecalis with plasmid-encoded β-lactamase, we track colony expansion dynamics and visualize spatial patterns in fluorescently labeled populations exposed to antibiotics. We find that the radial expansion rate of mixed communities is approximately constant over a wide range of drug concentrations and initial population compositions. Imaging of the final populations shows that resistance to ampicillin is cooperative, with sensitive cells surviving in the presence of resistant cells at otherwise lethal concentrations. The populations exhibit a diverse range of spatial segregation patterns that depend on drug concentration and initial conditions. Mathematical models indicate that the observed dynamics are consistent with global cooperation, despite the fact that β-lactamase remains cell-associated. Experiments confirm that resistant colonies provide a protective effect to sensitive cells on length scales multiple times the size of a single colony, and populations seeded with (on average) no more than a single resistant cell can produce mixed communities in the presence of the drug. While biophysical models of drug degradation suggest that individual resistant cells offer only short-range protection to neighboring cells, we show that long-range protection may arise from synergistic effects of multiple resistant cells, providing surprisingly large protection zones even at small population fractions.Subject terms: Microbial ecology, Antibiotics, Population dynamics  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号