首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   9篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   6篇
  2003年   3篇
  2002年   9篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1995年   2篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   9篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   4篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
31.
Desferri-exochelins are siderophores secreted by Mycobacterium tuberculosis that are both lipid- and water-soluble and have a high binding affinity for iron. Desferri-exochelin 772SM inhibits DNA replication and ribonucleotide reductase activity at 10-fold less concentration than the lipid-insoluble iron chelator deferoxamine, which is currently in clinical use. Neither chelator can extract iron directly from ribonucleotide reductase. However, because of its lipid-solubility and high binding affinity, desferri-exochelin is able to enter cells rapidly and access intracellular iron, while deferoxamine has limited capacity to cross the cell membrane.  相似文献   
32.
Improvements in purification of membrane-associated methane monooxygenase (pMMO) have resulted in preparations of pMMO with activities more representative of physiological rates: i.e., >130 nmol.min(-1).mg of protein(-1). Altered culture and assay conditions, optimization of the detergent/protein ratio, and simplification of the purification procedure were responsible for the higher-activity preparations. Changes in the culture conditions focused on the rate of copper addition. To document the physiological events that occur during copper addition, cultures were initiated in medium with cells expressing soluble methane monooxygenase (sMMO) and then monitored for morphological changes, copper acquisition, fatty acid concentration, and pMMO and sMMO expression as the amended copper concentration was increased from 0 (approximately 0.3 microM) to 95 microM. The results demonstrate that copper not only regulates the metabolic switch between the two methane monooxygenases but also regulates the level of expression of the pMMO and the development of internal membranes. With respect to stabilization of cell-free pMMO activity, the highest cell-free pMMO activity was observed when copper addition exceeded maximal pMMO expression. Optimization of detergent/protein ratios and simplification of the purification procedure also contributed to the higher activity levels in purified pMMO preparations. Finally, the addition of the type 2 NADH:quinone oxidoreductase complex (NADH dehydrogenase [NDH]) from M. capsulatus Bath, along with NADH and duroquinol, to enzyme assays increased the activity of purified preparations. The NDH and NADH were added to maintain a high duroquinol/duroquinone ratio.  相似文献   
33.
Recent evidence suggests that the prion protein (PrP) is a copper binding protein. The N-terminal region of human PrP contains four sequential copies of the highly conserved octarepeat sequence PHGGGWGQ spanning residues 60-91. This region selectively binds Cu2+ in vivo. In a previous study using peptide design, EPR, and CD spectroscopy, we showed that the HGGGW segment within each octarepeat comprises the fundamental Cu2+ binding unit [Aronoff-Spencer et al. (2000) Biochemistry 40, 13760-13771]. Here we present the first atomic resolution view of the copper binding site within an octarepeat. The crystal structure of HGGGW in a complex with Cu2+ reveals equatorial coordination by the histidine imidazole, two deprotonated glycine amides, and a glycine carbonyl, along with an axial water bridging to the Trp indole. Companion S-band EPR, X-band ESEEM, and HYSCORE experiments performed on a library of 15N-labeled peptides indicate that the structure of the copper binding site in HGGGW and PHGGGWGQ in solution is consistent with that of the crystal structure. Moreover, EPR performed on PrP(23-28, 57-91) and an 15N-labeled analogue demonstrates that the identified structure is maintained in the full PrP octarepeat domain. It has been shown that copper stimulates PrP endocytosis. The identified Gly-Cu linkage is unstable below pH approximately 6.5 and thus suggests a pH-dependent molecular mechanism by which PrP detects Cu2+ in the extracellular matrix or releases PrP-bound Cu2+ within the endosome. The structure also reveals an unusual complementary interaction between copper-structured HGGGW units that may facilitate molecular recognition between prion proteins, thereby suggesting a mechanism for transmembrane signaling and perhaps conversion to the pathogenic form.  相似文献   
34.
Cobalt(II) ion and L-carnosine produce two different complexes when mixed in aqueous solution at pH 7.2. One complex has coordination of N-3 of the imidazole ring to the cobalt(II) and is produced when the concentration of peptide exceeds that of cobalt(II). The second complex has chelation of three nitrogen atoms of a single carnosine. This second complex produces a reversible oxygen carrier by making stable mixed chelates with additional carnosine, histidine or cysteine. These results indicate that cobalt complexes with mixed ligands should be of more importance invivo than those with carnosine as the only ligand. They provide an explanation for the high activity and substrate specificity of carnosinase in kidney.  相似文献   
35.
Mechanistic details of the interaction of 1,10-phenanthroline and its copper complex with Ehrlich ascites tumor cells were examined, using inhibition of cell proliferation, DNA breakage, and increased membrane permeability as indices of cellular damage. The metal chelating agent, 1,10-phenanthroline (OP), the 1:0.5 complex of 1,10-phenanthroline and CuCl2 [(OP)2Cu], and CuCl2 inhibited growth of Ehrlich ascites tumor cell monolayers during 48-h treatments by 50% at about 3.5, 2, and 70 nmol/10(5) cells/mL, respectively. (OP)2Cu at 10 nmol/10(5) cells also enhanced uptake of trypan blue dye during 6 h of treatment, while dye uptake in OP- and CuCl2-treated cells remained similar to controls. DNA breakage, measured by DNA alkaline elution, was produced during 1-h treatments with (OP)2Cu at drug/cell ratios similar to those producing growth inhibition. Copper uptake was similar for both (OP)2Cu and CuCl2. Electron spin resonance (ESR) spectroscopy suggested that cellular ligands bind copper added as (OP)2Cu or CuCl2 and then undergo time-dependent reductions of Cu(II) to Cu(I) for both forms. Inhibition of (OP)2Cu-induced single-strand scission and trypan blue uptake by scavengers of activated oxygen is consistent with participation of superoxide and H2O2 in both processes. In contrast, superoxide dismutase (SOD) did not reduce the magnitude of the fraction of cellular DNA appearing in lysis fractions prior to alkaline elution of (OP)2Cu-treated cells. Dimethyl sulfoxide (DMSO) inhibited uptake of trypan blue dye but did not inhibit DNA strand scission produced by (OP)2Cu. Thus, multiple mechanisms for generation of oxidative damage occur in (OP)2Cu-treated cells. Growth inhibition produced by OP or (OP)2Cu, as well as the low levels of strand scission produced by OP, was not reversed by scavengers.  相似文献   
36.
The heme iron of the β chains of mammalian hemoglobins are rapidly and selectively oxidized in the presence of excess Cu(II) ions in a reaction that requires the presence of a free -SH groups on the β globin chain. The presence of freely reactive -SH groups on the α chains of cat and sheep hemoglobins does not alter the course of this reaction: only the β hemes are oxidized rapidly by Cu(II) in these hemoglobins. Two equivalents of copper are required for the rapid oxidation of the two β chain hemes per mole of cat hemoglobin, in contrast with the four equivalents that are required for reaction with human hemoglobin. The human-cat hybrid hemoglobins, α2Humanβ2Cat and α2Catβ2Human, required two and four equivalents of copper/mol, respectively, for the reaction. Thus, the kinetics and stoichimetry of the reaction are determined by the nature of the β subunit. Analysis of the esr spectra of the products of the reaction of Cu(II) with these hemoglobins indicate that human hemoglobin and the hybrid α2Catβ2Human contain tight binding sites for two equivalents of Cu(II) that are not involved in the oxidation reaction and are not present in cat hemoglobin or α2Humanβ2Cat. Cat β globin like others (sheep, bovine) that lack the tight binding site, has no histidine residue at 2β. It has phenylalanine in this position. These results support the suggestion of Rifkind et al. (Biochemistry 15,5337[1976]) that the tight binding site is near the amino terminal region of the β chain and is associated with histidine 2β.  相似文献   
37.
X-band (9.1 GHz) and S-band (3.4 GHz) electron paramagnetic resonance (EPR) spectra for particulate methane monooxygenase (pMMO) in whole cells from Methylococcus capsulatus (Bath) grown on (63)Cu and (15)N were obtained and compared with previously reported spectra for pMMO from Methylomicrobium album BG8. For both M. capsulatus (Bath) and M. album BG8, two nearly identical Cu(2+) EPR signals with resolved hyperfine coupling to four nitrogens are observed. The EPR parameters for pMMO from M. capsulatus (Bath) (g( parallel) = 2.244, A( parallel) = 185 G, and A(N) = 19 G for signal one; g( parallel) = 2.246, A( parallel) = 180 G, and A(N) = 19 G for signal two) and for pMMO from M. album BG8 (g( parallel) = 2.243, A( parallel) = 180 G, and A(N) = 18 G for signal one; g( parallel) = 2. 251, A( parallel) = 180 G, and A(N) = 18 G for signal two) are very similar and are characteristic of type 2 Cu(2+) in a square planar or square pyramidal geometry. In three-pulse electron spin echo envelope modulation (ESEEM) data for natural-abundance samples, nitrogen quadrupolar frequencies due to the distant nitrogens of coordinated histidine imidazoles were observed. The intensities of the quadrupolar combination bands indicate that there are three or four coordinated imidazoles, which implies that most, if not all, of the coordinated nitrogens detected in the continuous wave spectra are from histidine imidazoles.  相似文献   
38.
C.R. MYERS, B.P. CARSTENS, W.E. ANTHOLINE and J.M. MYERS.2000. Shewanella putrefaciens MR-1 can reduce a diverse array of compounds under anaerobic conditions, including manganese and iron oxides, fumarate, nitrate, and many other compounds. These reductive processes are apparently linked to a complex electron transport system. Chromium (Cr) is a toxic and mutagenic metal and bacteria could potentially be utilized to immobilize Cr by reducing the soluble and bioavailable state, Cr(VI), to the insoluble and less bioavailable state, Cr(III). Formate-dependent Cr(VI) reductase activity was detected in anaerobically grown cells of S. putrefaciens MR-1, with highest specific activity in the cytoplasmic membrane. Both formate and NADH served as electron donors for Cr(VI) reductase, whereas l -lactate or NADPH did not support any activity. The addition of 10 μmol l−1 FMN markedly stimulated formate-dependent Cr(VI) reductase, and the activity was almost completely inhibited by diphenyliodonium chloride, an inhibitor of flavoproteins. Cr(VI) reductase activity was also inhibited by p -chloromercuriphenylsulphonate, azide, 2-heptyl-4-hydroxyquinolone- N -oxide, and antimycin A, suggesting involvement of a multi-component electron transport chain which could include cytochromes and quinones. Cr(V) was detected by electron paramagnetic resonance (EPR) spectroscopy, suggesting a one-electron reduction as the first step.  相似文献   
39.
Surf1p is a protein of the inner membrane of mitochondria that functions in the assembly of cytochrome-c oxidase. The specifics of the role of Surf1p have remained unresolved. Numerous mutations in human Surf1p lead to severe mitochondrial disease. A homolog of human Surf1p is encoded by the genome of the alpha-proteobacterium Rhodobacter sphaeroides, which synthesizes a mitochondrial-like aa(3)-type cytochrome-c oxidase. The gene for Surf1p was deleted from the genome of R. sphaeroides. The resulting aa(3)-type oxidase was purified and analyzed by biochemical methods plus optical and EPR spectroscopy. The oxidase that assembled in the absence of Surf1p was composed of three subpopulations with structurally distinct heme a(3)-Cu active sites. 50% of the oxidase lacked heme a(3), 10-15% contained heme a(3) but lacked Cu(BB), and 35-40% had a normal heme a(3) -Cu(B) active site with normal activity. Cu(A) assembly was unaffected. All of the oxidase contained low-spin heme a, but the environment of the heme a center was slightly altered in the 50% of the enzyme that lacked heme a(3). Introduction of a normal copy of the gene for Surf1p on an exogenous plasmid resulted in a single population of normally assembled, highly active enzyme. The data indicate that Surf1p plays a role in facilitating the insertion of heme a(3) into the active site of cytochrome-c oxidase. The results suggest that maturation of the heme a(3)-Cu(B) center is a step that limits the association of subunits I and II in the assembly of mitochondrial cytochrome oxidase.  相似文献   
40.
The interaction of 2,9-dimethyl-1,10-phenanthroline (neocuproine or NC) and its copper complex with Ehrlich ascites tumor cells was studied. NC is frequently used as a negative control in studies of in vitro DNA degradation by copper phenanthroline and has also found use as a potential inhibitor of damage from oxidative stress in biological systems. NC inhibited Ehrlich cell growth in monolayer culture over 48 h treatment by 50% at 0.05 nmol/10(5) cells. Addition of 5- to 100-fold ratios of CuCl2 to NC (at 0.035 nmol NC/10(5) cells) produced progressively more growth inhibition. Addition of 1:0.5 ratios of NC to CuCl2 over the range of NC concentrations 0.08-0.2 nmol/10(5) cells/mL resulted in DNA single-strand breakage during 1-h treatments as measured by DNA alkaline elution. Concomitant addition of catalase or dimethyl sulfoxide (DMSO) inhibited DNA strand scission, while superoxide dismutase enhanced breakage. Catalase and DMSO also inhibited induction of membrane permeability by the copper complex of NC. These cellular effects apparently result from the intracellular generation of hydroxyl radical from H2O2. NC facilitated the uptake of copper into cells, though it was initially bound as a copper-histidine-like complex. The internalized copper was reduced to Cu(I), bound mostly as (NC)2Cu(I). To explain the (NC)2Cu-dependent generation of hydroxyl radical, it is hypothesized that glutathione successfully competes for Cu(I), converting it to a redox-active form that can catalyze the reduction of molecular oxygen to .OH. Model studies support this view. Radical scavengers did not reverse growth inhibition produced by NC or NC + CuCl2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号