首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   44篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   10篇
  2019年   8篇
  2018年   10篇
  2017年   11篇
  2016年   24篇
  2015年   32篇
  2014年   28篇
  2013年   38篇
  2012年   50篇
  2011年   47篇
  2010年   26篇
  2009年   14篇
  2008年   41篇
  2007年   37篇
  2006年   18篇
  2005年   26篇
  2004年   36篇
  2003年   24篇
  2002年   35篇
  2001年   1篇
  2000年   3篇
  1999年   8篇
  1998年   11篇
  1997年   7篇
  1996年   1篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   6篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1970年   1篇
  1961年   1篇
排序方式: 共有619条查询结果,搜索用时 31 毫秒
131.
To investigate extrinsic origins of calcitonin gene-related peptide immunoreactive (CGRP-IR) nerve fibres in the sheep ileum, the retrograde fluorescent tracer Fast Blue (FB) was injected into the ileum wall. Sections of thoraco-lumbar dorsal root ganglia (DRG) and distal (nodose) vagal ganglia showing FB-labelled neurons were processed for CGRP immunohistochemistry. The distribution of CGRP-IR in fibres and nerve cell bodies in the ileum was also studied. CGRP-IR enteric neurons were morphometrically analysed in myenteric (MP) and submucosal plexuses (SMP) of lambs (2–4 months). Sensory neurons retrogradely labelled with FB were scattered in T5-L4 DRG but most were located at the upper lumbar levels (L1-L3); only a minor component of the extrinsic afferent innervation of the ileum was derived from nodose ganglia. In the DRG, 57% of retrogradely labelled neurons were also CGRP-IR. In cryostat sections, a dense network of CGRP-IR fibres was observed in the lamina propria beneath the epithelium, around the lacteals and lymphatic follicles (Peyer's platches), and along and around enteric blood vessels. Rare CGRP-IR fibres were also present in both muscle layers. Dense pericellular baskets of CGRP-IR fibres were observed around CGRP-negative somata. The only CGRP-IR nerve cells were well-defined Dogiel type II neurons localised in the MP and in the external and internal components of the SMP. CGRP-IR neurons in the myenteric ganglia were significantly larger than those in the submucosal ganglia (mean profile areas: about 1,400 μm2 for myenteric neurons, 750 μm2 for submucosal neurons). About 6% of myenteric neurons and 25% of submucosal neurons were CGRP-IR Dogiel type II neurons. The percentages of CGRP-IR neurons that were also tachykinin-IR were about 9% (MP) and 42% (SMP), whereas no CGRP-IR neurons exhibited immunoreactivity for vasoactive intestinal peptide, nitric oxide synthase or tyrosine hydroxylase in either plexus. Thus, CGRP immunoreactivity occurs in the enteric nervous system of the sheep ileum (as in human small intestine and MP of pig ileum) in only one morphologically defined type of neuron, Dogiel type II cells. These are probably intrinsic primary afferent neurons. This work was supported by grants from the Ricerca Fondamentale Orientata (RFO) and Fondazione Del Monte di Bo e Ra.  相似文献   
132.
Two bread wheat (Triticum aestivum L.) cultivars (Albimonte, traditional cultivar very important in Italy since long time; and Manital, more recent, evincing better productive performances) were grown for 10 d in presence of 0.7 (control), 70 or 350 μM ZnSO4, to verify whether Zn excess was differently managed at inter-varietal and at inter-organ level. Roots were found to be the main site of Zn accumulation, although a moderate metal translocation to leaves occurred in both cultivars. Despite only slight differences in internal Zn concentrations between cultivars, Albimonte seemed to be more sensitive to Zn excess in terms of growth reduction and H2O2 accumulation, suggesting that the diversities in responses to Zn stress should be ascribed here to inter-varietal metabolic differences. In both cultivars, increased NAD(P)H oxidation rate by pH-dependent peroxidases, and reduced detoxification activity by catalase and peroxidases, were responsible for Zn-induced H2O2 accumulation, while total superoxide dismutase content and activity seemed in general to not change or even depress. Moreover, differences in the content of thiol-peptide compounds (glutathione and phytochelatins) were detected, suggesting indeed the setting up of differential response mechanisms to Zn excess at an inter-varietal and inter-organ level.  相似文献   
133.
Thiosemicarbazones are versatile organic compounds that present considerable pharmaceutical interest because of a wide range of properties. In our laboratory we synthesised some new metal-complexes with thiosemicarbazones derived from natural aldehydes which showed peculiar biological activities. In particular, a nickel complex [Ni(S-tcitr)2] (S-tcitr = S-citronellalthiosemicarbazonate) was observed to induce an antiproliferative effect on U937, a human histiocytic lymphoma cell line, at low concentrations (IC50 = 14.4 μM). Therefore, we decided to study the interactions of this molecule with various cellular components and to characterise the induced apoptotic pathway. Results showed that [Ni(S-tcitr)2] causes programmed cell death via down-regulation of Bcl-2, alteration of mitochondrial membrane potential and caspase-3 activity, regardless of p53 function. The metal complex is not active on G0 cells (i.e. fresh leukocytes) but is able to induce perturbation of the cell cycle on stimulated lymphocytes and U937 cells, in which a G2/M block was detected. It reaches the nucleus where it induces, at low concentrations (2.5-5.0 μM), DNA damage, which could be partially ascribed to oxidative stress. [Ni(S-tcitr)2] is moreover able to strongly reduce the telomerase activity. Although the biological target of this metal complex is still unknown, the reported data suggest that [Ni(S-tcitr)2] could be a good model for the synthesis of new metal thiosemicarbazones with specific biological activity.  相似文献   
134.
Anoxic and metabolic stresses in large‐scale cell culture during biopharmaceutical production can induce apoptosis. Strategies designed to ameliorate the problem of apoptosis in cell culture have focused on mRNA knockdown of pro‐apoptotic proteins and over‐expression of anti‐apoptotic ones. Apoptosis in cell culture involves mitochondrial permeabilization by the pro‐apoptotic Bak and Bax proteins; activity of either protein is sufficient to permit apoptosis. We demonstrate here the complete and permanent elimination of both the Bak and Bax proteins in combination in Chinese hamster ovary (CHO) cells using zinc‐finger nuclease‐mediated gene disruption. Zinc‐finger nuclease cleavage of BAX and BAK followed by inaccurate DNA repair resulted in knockout of both genes. Cells lacking Bax and Bak grow normally but fail to activate caspases in response to apoptotic stimuli. When grown using scale‐down systems under conditions that mimic growth in large‐scale bioreactors they are significantly more resistant to apoptosis induced by starvation, staurosporine, and sodium butyrate. When grown under starvation conditions, BAX‐ and BAK‐deleted cells produce two‐ to fivefold more IgG than wild‐type CHO cells. Under normal growth conditions in suspension culture in shake flasks, double‐knockout cultures achieve equal or higher cell densities than unmodified wild‐type cultures and reach viable cell densities relevant for large‐scale industrial protein production. Biotechnol. Bioeng. 2010; 105: 330–340. © 2009 Wiley Periodicals, Inc.  相似文献   
135.
136.
Hippocampal excitability and the metabolic glial-neuronal interactions were investigated in 22-week-old mice with motor neuron degeneration (mnd), a model of progressive epilepsy with mental retardation. Mnd mice developed spontaneous spikes in the hippocampus and were more susceptible to kainate-induced seizures compared with control mice. Neuronal hyperexcitability in their hippocampus was confirmed by the selective increase of c-Fos positive nuclei. Glial activation and pro-inflammatory cytokines over-expression were observed in the hippocampus of mnd mice, even in the absence of marked hippocampal neurodegeneration, as suggested by unchanged amounts of neuroactive amino acids and N-acetyl aspartate. Concentration of other amino acids, including GABA and glutamate, was not changed as well. However, ex vivo(13) C magnetic resonance spectroscopy, after simultaneous injection of [1-(13) C]glucose and [1,2-(13) C]acetate, followed by decapitation, showed decreased [1,2-(13) C]GABA formation from hippocampal astrocytic precursors and a marked reduction in [4,5-(13) C]glutamate derived from glutamine. We suggest that astrocyte dysfunction plays a primary role in the pathology and that mnd mice are of value to investigate early pathogenetic mechanism of progressive epilepsy with mental retardation.  相似文献   
137.
This paper presents a model of a dynamic vaccination game in a population consisting of a collection of groups, each of which holds distinct perceptions of vaccinating versus non-vaccinating risks. Vaccination is regarded here as a game due to the fact that the payoff to each population group depends on the so-called perceived probability of getting infected given a certain level of the vaccine coverage in the population, a level that is generally obtained by the vaccinating decisions of other members of a population. The novelty of this model resides in the fact that it describes a repeated vaccination game (over a finite time horizon) of population groups whose sizes vary with time. In particular, the dynamic game is proven to have solutions using a parametric variational inequality approach often employed in optimization and network equilibrium problems. Moreover, the model does not make any assumptions upon the level of the vaccine coverage in the population, but rather computes this level as a final result. This model could then be used to compute possible vaccine coverage scenarios in a population, given information about its heterogeneity with respect to perceived vaccine risks. In support of the model, some theoretical results were advanced (presented in the appendix) to ensure that computation of optimal vaccination strategies can take place; this means, the theory states the existence, uniqueness and regularity (in our case piecewise continuity) of the solution curves representing the evolution of optimal vaccination strategies of each population group.  相似文献   
138.
139.
Aldolase C is selectively expressed in the hippocampus and Purkinje cells in adult mammalian brain. The gene promoter regions governing cell-specific aldolase C expression are obscure. We show that aldolase C messenger expression in the hippocampus is restricted to CA3 neurons. The human distal promoter region (-200/-1200 bp) is essential for beta-galactosidase (beta-gal) expression in CA3 neurons and drives high stripe-like beta-gal expression in Purkinje cells. The 200 bp proximal promoter region is sufficient to drive low brain-specific and stripe-like beta-gal expression in Purkinje cells. Thus, the human aldolase C gene sequences studied drive endogenous-like expression in the brain.  相似文献   
140.
Cyclic nitramine explosives, RDX, HMX, and CL-20 are hydrophobic pollutants with very little aqueous solubility. In sediment and soil environments, they are often attached to solid surfaces and/or trapped in pores and distribute heterogeneously in aqueous environments. For efficient bioremediation of these explosives, the microorganism(s) must access them by chemotaxis ability. In the present study, we isolated an obligate anaerobic bacterium Clostridium sp. strain EDB2 from a marine sediment. Strain EDB2, motile with numerous peritrichous flagella, demonstrated chemotactic response towards RDX, HMX, CL-20, and NO(2)(-). The three explosives were biotransformed by strain EDB2 via N-denitration with concomitant release of NO(2)(-). Biotransformation rates of RDX, HMX, and CL-20 by the resting cells of strain EDB2 were 1.8+/-0.2, 1.1+/-0.1, and 2.6+/-0.2nmol h(-1)mgwet biomass(-1) (mean+/-SD; n=3), respectively. We found that commonly seen RDX metabolites such as TNX, methylenedinitramine, and 4-nitro-2,4-diazabutanal neither produced NO(2)(-) during reaction with strain EDB2 nor they elicited chemotaxis response in strain EDB2. The above data suggested that NO(2)(-) released from explosives during their biotransformation might have elicited chemotaxis response in the bacterium. Biodegradation and chemotactic ability of strain EDB2 renders it useful in accelerating the bioremediation of explosives under in situ conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号