首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1058篇
  免费   42篇
  2023年   7篇
  2022年   11篇
  2021年   28篇
  2020年   17篇
  2019年   17篇
  2018年   25篇
  2017年   21篇
  2016年   27篇
  2015年   41篇
  2014年   50篇
  2013年   63篇
  2012年   82篇
  2011年   68篇
  2010年   33篇
  2009年   37篇
  2008年   49篇
  2007年   53篇
  2006年   42篇
  2005年   43篇
  2004年   28篇
  2003年   32篇
  2002年   23篇
  2001年   12篇
  2000年   19篇
  1999年   12篇
  1998年   7篇
  1997年   8篇
  1996年   10篇
  1995年   6篇
  1994年   5篇
  1992年   11篇
  1991年   6篇
  1987年   9篇
  1986年   6篇
  1985年   11篇
  1984年   8篇
  1978年   5篇
  1977年   7篇
  1976年   9篇
  1975年   5篇
  1974年   8篇
  1973年   11篇
  1972年   9篇
  1971年   14篇
  1970年   16篇
  1969年   12篇
  1968年   14篇
  1967年   11篇
  1966年   14篇
  1965年   7篇
排序方式: 共有1100条查询结果,搜索用时 23 毫秒
81.
The G protein α‐subunit (Gna1) in the wheat pathogen Stagonospora nodorum has previously been shown to be a critical controlling element in disease ontogeny. In this study, iTRAQ and 2‐D LC MALDI‐MS/MS have been used to characterise protein expression changes in the S. nodorum gna1 strain versus the SN15 wild‐type. A total of 1336 proteins were identified. The abundance of 49 proteins was significantly altered in the gna1 strain compared with the wild‐type. Gna1 was identified as having a significant regulatory role on primary metabolic pathways, particularly those concerned with NADPH synthesis or consumption. Mannitol dehydrogenase was up‐regulated in the gna1 strain while mannitol 1‐phosphate dehydrogenase was down‐regulated providing direct evidence of Gna1 regulation over this enigmatic pathway. Enzymatic analysis and growth assays confirmed this regulatory role. Several novel hypothetical proteins previously associated with stress and pathogen responses were identified as positively regulated by Gna1. A short‐chain dehydrogenase (Sch3) was also significantly less abundant in the gna1 strains. Sch3 was further characterised by gene disruption in S. nodorum by homologous recombination. Functional characterisation of the sch3 strains revealed their inability to sporulate in planta providing a further link to Gna1 signalling and asexual reproduction. These data add significantly to the identification of the regulatory targets of Gna1 signalling in S. nodorum and have demonstrated the utility of iTRAQ in dissecting signal transduction pathways.  相似文献   
82.
The study was undertaken in eight endemic districts of Orissa, India, to find the members of the species complexes of Anopheles culicifacies and Anopheles fluviatilis and their distribution patterns. The study area included six forested districts (Keonjhar, Angul, Dhenkanal, Ganjam, Nayagarh and Khurda) and two non-forested coastal districts (Puri and Jagatsingpur) studied over a period of two years (June 2007-May 2009). An. culicifacies A, B, C and D and An. fluviatilis S and T sibling species were reported. The prevalence of An. culicifacies A ranged from 4.2-8.41%, B from 54.96-76.92%, C from 23.08-33.62% and D from 1.85-5.94% (D was reported for the first time in Orissa, except for occurrences in the Khurda and Nayagarh districts). The anthropophilic indices (AI) were 3.2-4.8%, 0.5-1.7%, 0.7-1.37% and 0.91-1.35% for A, B, C and D, respectively, whereas the sporozoite rates (SR) were 0.49-0.54%, 0%, 0.28-0.37% and 0.41-0.46% for A, B, C and D, respectively. An. fluviatilis showed a similarly varied distribution pattern in which S was predominant (84.3% overall); its AI and SR values ranged from 60.7-90.4% and 1.2-2.32%, respectively. The study observed that the co-existence of potential vector sibling species of An. culicifacies (A, C and D) and An. fluviatilis S (> 50%) was responsible for the high endemicity of malaria in forested districts such as Dhenkanal, Keonjhar, Angul, Ganjam, Nayagarh and Khurda (> 5% slide positivity rate). Thus, the epidemiological scenario for malaria is dependent on the distribution of the vector sibling species and their vectorial capacity.  相似文献   
83.
Chloride is an indispensable factor for the functioning of oxygen evolving complex (OEC) and has protective and activating effects on photosystem II. In this study we have investigated mainly by EPR, the properties of chloride-sufficient, chloride-deficient and chloride-depleted thylakoid membranes and photosystem II enriched membranes from spinach. The results on the effects of different chloride depletion methods on the structural and functional aspects of photosystem II showed that chloride-depletion by treating PS II membranes with high pH is a relatively harsh way causing a significant and irreparable damage to the PS II donor side. Damage to the acceptor side of PS II was recovered almost fully in chloride-deficient as well as chloride-depleted PS II membranes.  相似文献   
84.
Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 μM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPγS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.  相似文献   
85.
We showed earlier that 15 deoxy Δ12,14 prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion [1]. However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.  相似文献   
86.
AimsWe sought to identify, purify and partially characterize a protein inhibitor of Na+/K+-ATPase in cytosol of pulmonary artery smooth muscle.Main methods(i) By spectrophotometric assay, we identified an inhibitor of Na+/K+-ATPase in cytosolic fraction of pulmonary artery smooth muscle; (ii) the inhibitor was purified by a combination of ammonium sulfate precipitation, diethylaminoethyl (DEAE) cellulose chromatography, hydroxyapatite chromatography and gel filtration chromatography; (iii) additionally, we have also purified Na+/K+-ATPase α2β1 and α1β1 isozymes for determining some characteristics of the inhibitor.Key findingsWe identified a novel endogenous protein inhibitor of Na+/K+-ATPase having an apparent mol mass of ~ 70 kDa in the cytosolic fraction of the smooth muscle. The IC50 value of the inhibitor towards the enzyme was determined to be in the nanomolar range. Important characteristics of the inhibitor are as follows: (i) it showed different affinities toward the α2β1 and α1β1 isozymes of the Na+/K+-ATPase; (ii) it interacted reversibly to the E1 site of the enzyme; (iii) the inhibitor blocked the phosphorylated intermediate formation; and (iv) it competitively inhibited the enzyme with respect to ATP. CD studies indicated that the inhibitor causes an alteration of the conformation of the enzyme. The inhibition study also suggested that the DHPC solubilized Na+/K+-ATPase exists as (αβ)2 diprotomer.SignificanceThe inhibitor binds to the Na+/K+-ATPase at a site different from the ouabain binding site. The novelty of the inhibitor is that it acts in an isoform specific manner on the enzyme, where α2 is more sensitive than α1.  相似文献   
87.
88.
Sixteen isolates of Nontubercular Mycobacteria species were isolated from drinking water supply of some educational institutes in Jabalpur during July 2006 and were identified by biochemical test, thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) analysis and PRA ( PCR restriction enzyme analysis) of rpoB gene. Out of 21 water samples total 16 isolates of nontuberculous mycobacteria were identified, as M. terrae (6), M. szulgai (4), M. gordonae (3), and one each as M. malmoense, M. kansasii, and M. gastri.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号