首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   11篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   7篇
  2013年   9篇
  2012年   19篇
  2011年   18篇
  2010年   8篇
  2009年   17篇
  2008年   10篇
  2007年   8篇
  2006年   10篇
  2005年   10篇
  2004年   14篇
  2003年   7篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1992年   1篇
  1985年   1篇
  1967年   2篇
排序方式: 共有180条查询结果,搜索用时 687 毫秒
51.

Background

E. coli belonging to the phylogenetic group B2 are linked to Inflammatory Bowel Disease (IBD). Studies have shown that antimicrobials have some effect in the treatment of IBD, and it has been demonstrated that E. coli Nissle has prophylactic abilities comparable to 5-aminosalicylic acid (5-ASA) therapy in ulcerative colitis. The objective of this study was to test if ciprofloxacin and/or E. coli Nissle could eradicate IBD associated E. coli in the streptomycin-treated mouse intestine.

Results

After successful colonization with the IBD associated E. coli strains in mice the introduction of E. coli Nissle did not result in eradication of either IBD associated strains or an E. coli from a healthy control, instead, co-colonization at high levels were obtained. Treatment of mice, precolonized with IBD associated E. coli, with ciprofloxacin for three days alone apparently resulted in effective eradication of tested E. coli. However, treatment of precolonized mice with a combination of ciprofloxacin for 3 days followed by E. coli Nissle surprisingly allowed one IBD associated E. coli to re-colonize the mouse intestine, but at a level 3 logs under E. coli Nissle. A prolonged treatment with ciprofloxacin for 7 days did not change this outcome.

Conclusions

In the mouse model E. coli Nissle can not be used alone to eradicate IBD associated E. coli; rather, 3 days of ciprofloxacin are apparently efficient in eradicating these strains, but surprisingly, after ciprofloxacin treatment (3 or 7 days), the introduction of E. coli Nissle may support re-colonization with IBD associated E. coli.  相似文献   
52.
Three hundred and twenty-nine Greek honey samples of different botanical and geographical origin were collected and examined by organoleptic evaluation, melissopalynological analysis, measurement of electrical conductivity and colour. The results showed that 208 samples were unifloral with 178 of them representing the main types of unifloral honey produced in Greece; that is fir, pine, chestnut, cotton, orange and thyme honey. All honeys had the sensory characteristics typical of their origin and complied with the electrical conductivity standards set by Council Directive 2001/110/EC.

Fir and pine honeydew honey had a low honeydew element/pollen (HDE/P) ratio and belonged to Maurizio's Classes II or III. The pollen types identified in these honeys ranged from 11 to 45%. Chestnut nectar honey contained >90% chestnut pollen, had a total number of plant elements of >245,000/10?g, and low pollen diversity. Cotton honey contained 1.2 to 16.5% cotton pollen, belonged to Maurizio's Class II, and had 22 pollen types, with Castanea sativa L. present in all samples. Orange honey contained 2.9 to 26.5% Citrus spp. pollen, belonged to Maurizio's Class II, and was characterized by the presence of Brassicaceae, Fabaceae, Olea europea L., Quercus coccifera L. and Rosaceae. In thyme honeys Thymus capitatus Hoffm. &; Link. pollen was secondary or predominant ranging from 18.3 to 69.3%. These honeys belonged to Maurizio's Classes I or II and contained greater than 30 pollen types. Other Lamiaceae, Hypericum spp., Brassicaceae, Fabaceae, Rosaceae, and Cistus spp. pollen types appeared in the greatest number of thyme samples.  相似文献   
53.
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.  相似文献   
54.
Pulses have constituted an important food source for prehistoric communities in the Old World, yet little is known as regards their processing for consumption through the archaeobotanical record. This paper provides an overview of archaeobotanical evidence for the use of pulses in prehistoric Greece based on two case studies from the north, and explores (a) their preparation for consumption, in particular their detoxification and (b) the consumption of pulses as a component of ordinary daily meals in prehistoric times, as well as those for special occasions, within a context of feasting and ritual. The paper examines charred remains of Vicia ervilia (bitter vetch) and Lathyrus sativus (grass pea) from early Bronze Age Agios Athanasios and late Neolithic Kremasti Koiladas, respectively, as the former provides a basis for a pilot exploration of pulse detoxification and the latter, due to its origin, offers a rare opportunity to discuss the context of consumption. In the pilot exploration of pulse seed preparation for consumption, the inner cotyledon morphology of modern V. ervilia seeds which were experimentally processed with water and pounding was examined macroscopically and through SEM micrographs. Preliminary observations suggest that intentional splitting of pulse seeds as part of processing for consumption as food may be recognisable in the archaeobotanical record. Processing with water may also be detected. The particular context of the Kremasti finds suggests that pulses, in this particular case L. sativus, may have constituted special foods for particular occasions, loaded with symbolic meaning.  相似文献   
55.
NKCC1 and KCC2, related cation-chloride cotransporters (CCC), regulate cell volume and γ-aminobutyric acid (GABA)-ergic neurotranmission by modulating the intracellular concentration of chloride [Cl(-)]. These CCCs are oppositely regulated by serine-threonine phosphorylation, which activates NKCC1 but inhibits KCC2. The kinase(s) that performs this function in the nervous system are not known with certainty. WNK1 and WNK4, members of the WNK (with no lysine [K]) kinase family, either directly or via the downstream SPAK/OSR1 Ste20-type kinases, regulate the furosemide-sensitive NKCC2 and the thiazide-sensitive NCC, kidney-specific CCCs. What role the novel WNK2 kinase plays in this regulatory cascade, if any, is unknown. Here, we show that WNK2, unlike other WNKs, is not expressed in kidney; rather, it is a neuron-enriched kinase primarily expressed in neocortical pyramidal cells, thalamic relay cells, and cerebellar granule and Purkinje cells in both the developing and adult brain. Bumetanide-sensitive and Cl(-)-dependent (86)Rb(+) uptake assays in Xenopus laevis oocytes revealed that WNK2 promotes Cl(-) accumulation by reciprocally activating NKCC1 and inhibiting KCC2 in a kinase-dependent manner, effectively bypassing normal tonicity requirements for cotransporter regulation. TiO(2) enrichment and tandem mass spectrometry studies demonstrate WNK2 forms a protein complex in the mammalian brain with SPAK, a known phosphoregulator of NKCC1. In this complex, SPAK is phosphorylated at Ser-383, a consensus WNK recognition site. These findings suggest a role for WNK2 in the regulation of CCCs in the mammalian brain, with implications for both cell volume regulation and/or GABAergic signaling.  相似文献   
56.
Streptococcus pneumoniae (the pneumococcus) produces 1 of 91 capsular polysaccharides (CPS) that define the serotype. The cps loci of 88 pneumococcal serotypes whose CPS is synthesized by the Wzy-dependent pathway were compared with each other and with additional streptococcal polysaccharide biosynthetic loci and were clustered according to the proportion of shared homology groups (HGs), weighted for the sequence similarities between the genes encoding the shared HGs. The cps loci of the 88 pneumococcal serotypes were distributed into eight major clusters and 21 subclusters. All serotypes within the same serogroup fell into the same major cluster, but in six cases, serotypes within the same serogroup were in different subclusters and, conversely, nine subclusters included completely different serotypes. The closely related cps loci within a subcluster were compared to the known CPS structures to relate gene content to structure. The Streptococcus oralis and Streptococcus mitis polysaccharide biosynthetic loci clustered within the pneumococcal cps loci and were in a subcluster that also included the cps locus of pneumococcal serotype 21, whereas the Streptococcus agalactiae cps loci formed a single cluster that was not closely related to any of the pneumococcal cps clusters.  相似文献   
57.
58.
Scavenger receptor class B type I (SR-BI) and ABCA1 are structurally dissimilar cell surface proteins that play key roles in HDL metabolism. SR-BI is a receptor that binds HDL with high affinity and mediates both the selective lipid uptake of cholesteryl esters from lipid-rich HDL to cells and the efflux of unesterified cholesterol from cells to HDL. ABCA1 mediates the efflux of unesterified cholesterol and phospholipids from cells to lipid-poor apolipoprotein A-I (apoA-I). The activities of ABCA1 and other ATP binding cassette superfamily members are inhibited by the drug glyburide, and SR-BI-mediated lipid transport is blocked by small molecule inhibitors called BLTs. Here, we show that one BLT, [1-(2-methoxy-phenyl)-3-naphthalen-2-yl-urea] (BLT-4), blocked ABCA1-mediated cholesterol efflux to lipid-poor apoA-I at a potency similar to that for its inhibition of SR-BI (IC(50) approximately 55-60 microM). Reciprocally, glyburide blocked SR-BI-mediated selective lipid uptake and efflux at a potency similar to that for its inhibition of ABCA1 (IC(50) approximately 275-300 microM). As is the case with BLTs, glyburide increased the apparent affinity of HDL binding to SR-BI. The reciprocal inhibition of SR-BI and ABCA1 by BLT-4 and glyburide raises the possibility that these proteins may share similar or common steps in their mechanisms of lipid transport.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号