首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7681篇
  免费   534篇
  国内免费   2篇
  8217篇
  2023年   45篇
  2022年   79篇
  2021年   137篇
  2020年   80篇
  2019年   114篇
  2018年   139篇
  2017年   134篇
  2016年   233篇
  2015年   382篇
  2014年   434篇
  2013年   485篇
  2012年   718篇
  2011年   686篇
  2010年   437篇
  2009年   404篇
  2008年   564篇
  2007年   468篇
  2006年   452篇
  2005年   362篇
  2004年   388篇
  2003年   364篇
  2002年   340篇
  2001年   47篇
  2000年   40篇
  1999年   55篇
  1998年   73篇
  1997年   55篇
  1996年   56篇
  1995年   39篇
  1994年   34篇
  1993年   47篇
  1992年   26篇
  1991年   21篇
  1990年   14篇
  1989年   24篇
  1988年   14篇
  1987年   17篇
  1986年   17篇
  1985年   13篇
  1984年   17篇
  1983年   27篇
  1982年   15篇
  1981年   16篇
  1980年   12篇
  1978年   7篇
  1977年   11篇
  1976年   10篇
  1975年   6篇
  1974年   7篇
  1971年   5篇
排序方式: 共有8217条查询结果,搜索用时 15 毫秒
101.
The exact molecular mechanisms underlying CCM pathogenesis remain a complicated and controversial topic. Our previous work illustrated an important VEGF signalling loop in KRIT1 depleted endothelial cells. As VEGF is a major mediator of many vascular pathologies, we asked whether the increased VEGF signalling downstream of KRIT1 depletion was involved in CCM formation. Using an inducible KRIT1 endothelial‐specific knockout mouse that models CCM, we show that VEGFR2 activation plays a role in CCM pathogenesis in mice. Inhibition of VEGFR2 using a specific inhibitor, SU5416, significantly decreased the number of lesions formed and slightly lowered the average lesion size. Notably, VEGFR2 inhibition also decreased the appearance of lesion haemorrhage as denoted by the presence of free iron in adjacent tissues. The presence of free iron correlated with increased microvessel permeability in both skeletal muscle and brain, which was completely reversed by SU5416 treatment. Finally, we show that VEGFR2 activation is a common downstream consequence of KRIT1, CCM2 and CCM3 loss of function, though the mechanism by which VEGFR2 activation occurs likely varies. Thus, our study clearly shows that VEGFR2 activation downstream of KRIT1 depletion enhances the severity of CCM formation in mice, and suggests that targeting VEGF signalling may be a potential future therapy for CCM.  相似文献   
102.
Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico‐ and nanophytoplankton biomass in coastal areas. Among the pico‐fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico‐ and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light‐harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega‐3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition‐related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.  相似文献   
103.
Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 μmol CH4 g−1 oil d−1, orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC–MS and FTICR–MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.  相似文献   
104.
105.
106.
107.
The International Journal of Life Cycle Assessment - The current global interest in circular economy (CE) opens an opportunity to make society’s consumption and production patterns more...  相似文献   
108.
109.
Biologists with the Louisiana Department of Wildlife and Fisheries, Louisiana, USA, have managed statewide annual harvest of alligators (Alligator mississippiensis) for 35 years (1981–present). We collected and analyzed harvest data for Louisiana alligators to determine the effects of harvest on the population structure, focusing on the larger size classes (≥274 cm) of this slow-growing species. Linear regression analyses revealed that body size-class structure, based on overall average size and the percentage of animals harvested in the larger size classes was relatively stable. Annual aerial alligator nest counts indicated a continual growth of the population, and over time harvested alligators maintained a constant average size. Analyses of population size (based on number of nests and population modeling) indicated that the current annual harvest represents approximately 3% of the population. Linear regression analysis showed that annual hunter success declined only slightly during the study period, and the scheduling of the hunt season after the hatch period and recommended hunting in areas not frequented by breeding females provides economic opportunities for hunters to participate in a sustainable harvest that preserves the larger size classes of alligators in the population. Strict enforcement of existing laws was a key factor responsible for the success of this harvest program. Comparison of alligator population size and number of harvest-related citations indicated that illegal harvest did not have a negative effect on population size, and linear regression analyses revealed that the rate of increase in citations was lower than the increase in populations over the study period. The results of this harvest program indicated that alligators can be hunted in a sustainable manner if hunting is conducted after the hatch period and occurs in areas that primarily exclude the harvest of adult females, and strict law enforcement curbs illegal activities that negatively affect populations. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   
110.
Virus detection methods are important to cope with the SARS-CoV-2 pandemics. Apart from the lung, SARS-CoV-2 was detected in multiple organs in severe cases. Less is known on organ tropism in patients developing mild or no symptoms, and some of such patients might be missed in symptom-indicated swab testing. Here, we tested and validated several approaches and selected the most reliable RT-PCR protocol for the detection of SARS-CoV-2 RNA in patients’ routine diagnostic formalin-fixed and paraffin-embedded (FFPE) specimens available in pathology, to assess (i) organ tropism in samples from COVID-19-positive patients, (ii) unrecognized cases in selected tissues from negative or not-tested patients during a pandemic peak, and (iii) retrospectively, pre-pandemic lung samples. We identified SARS-CoV-2 RNA in seven samples from confirmed COVID-19 patients, in two gastric biopsies, one small bowel and one colon resection, one lung biopsy, one pleural resection and one pleural effusion specimen, while all other specimens were negative. In the pandemic peak cohort, we identified one previously unrecognized COVID-19 case in tonsillectomy samples. All pre-pandemic lung samples were negative. In conclusion, SARS-CoV-2 RNA detection in FFPE pathology specimens can potentially improve surveillance of COVID-19, allow retrospective studies, and advance our understanding of SARS-CoV-2 organ tropism and effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号