首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   20篇
  2022年   1篇
  2021年   6篇
  2020年   6篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   10篇
  2014年   13篇
  2013年   16篇
  2012年   21篇
  2011年   14篇
  2010年   9篇
  2009年   9篇
  2008年   9篇
  2007年   10篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1968年   2篇
  1965年   1篇
  1916年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
61.
The production of interferon by fasted human subjects in response to lactic bacteria Lactobacillus bulgaricus and Streptococcus thermophilus was evaluated in vivo and in vitro. The 2'-5' A synthetase activity of blood mononuclear cells was used to estimate interferon production following a single ingestion of 10(11) bacteria in yoghurt or sterile milk (controls). The level of the 2'-5' A synthetase of the yoghurt fed subjects was 83% (p = 0.002) higher than that of the milk fed controls 24 hours after ingestion. The baseline value remained unchanged in the control group. Blood mononuclear cells from a second group of subjects, were cultured with lactic bacteria for 48 hours, their cell-free supernatants contained gamma interferon. These results suggest that a transient production of interferon can be induced in healthy subjects by the lactic bacteria used in food processing.  相似文献   
62.
63.
64.
Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs.  相似文献   
65.
The primary role of the innate immune response is to limit the spread of infectious pathogens, with activation of Toll-like receptor (TLR) and RIG-like receptor (RLR) pathways resulting in a pro-inflammatory response required to combat infection. Limiting the activation of these signaling pathways is likewise essential to prevent tissue injury in the host. Triad3A is an E3 ubiquitin ligase that interacts with several components of TLR signaling and modulates TLR activity. In the present study, we demonstrate that Triad3A negatively regulates the RIG-I RNA sensing pathway through Lys48-linked, ubiquitin-mediated degradation of the tumor necrosis factor receptor-associated factor 3 (TRAF3) adapter. Triad3A was induced following dsRNA exposure or virus infection and decreased TRAF3 levels in a dose-dependent manner; moreover, Triad3A expression blocked IRF-3 activation by Ser-396 phosphorylation and inhibited the expression of type 1 interferon and antiviral genes. Lys48-linked ubiquitination of TRAF3 by Triad3A increased TRAF3 turnover, whereas reduction of Triad3A expression by stable shRNA expression correlated with an increase in TRAF3 protein expression and enhancement of the antiviral response following VSV or Sendai virus infection. Triad3A and TRAF3 physically interacted together, and TRAF3 residues Y440 and Q442—previously shown to be important for association with the MAVS adapter—were also critical for Triad3A. Point mutation of the TRAF-Interacting-Motif (TIM) of Triad3A abrogated its ability to interact with TRAF3 and modulate RIG-I signaling. TRAF3 appears to undergo sequential ubiquitin “immuno-editing” following virus infection that is crucial for regulation of RIG-I-dependent signaling to the antiviral response. Thus, Triad3A represents a versatile E3 ubiquitin ligase that negatively regulates RIG-like receptor signaling by targeting TRAF3 for degradation following RNA virus infection.  相似文献   
66.
67.
68.
Solis MM  Doupe AJ 《Neuron》2000,25(1):109-121
Anterior forebrain (AF) neurons become selective for song as songbirds learn to produce a copy of a memorized tutor song. We report that development of selectivity is compromised when birds are prevented from matching their output to the tutor song. Finches with denervated vocal organs developed stable song, but it usually did not resemble the tutor song. In those birds, numerous neurons in Area X responded selectively to both tutor and bird's own song (BOS), indicating the importance of both in shaping AF responses. The degree of selectivity for BOS was less, however, than that of normal adults. In contrast, neurons in denervated birds that successfully mimicked tutor song exhibited normal adult selectivity for BOS. Thus, during sensorimotor learning, selectivity for complex stimuli may be influenced by how well motor output matches internal sensory models.  相似文献   
69.
70.
During oropharyngeal candidiasis (OPC), Candida albicans invades and damages oral epithelial cells, which respond by producing proinflammatory mediators that recruit phagocytes to foci of infection. The ephrin type-A receptor 2 (EphA2) detects β-glucan and plays a central role in stimulating epithelial cells to release proinflammatory mediators during OPC. The epidermal growth factor receptor (EGFR) also interacts with C. albicans and is known to be activated by the Als3 adhesin/invasin and the candidalysin pore-forming toxin. Here, we investigated the interactions among EphA2, EGFR, Als3 and candidalysin during OPC. We found that EGFR and EphA2 constitutively associate with each other as part of a heteromeric physical complex and are mutually dependent for C. albicans-induced activation. Als3-mediated endocytosis of a C. albicans hypha leads to the formation of an endocytic vacuole where candidalysin accumulates at high concentration. Thus, Als3 potentiates targeting of candidalysin, and both Als3 and candidalysin are required for C. albicans to cause maximal damage to oral epithelial cells, sustain activation of EphA2 and EGFR, and stimulate pro-inflammatory cytokine and chemokine secretion. In the mouse model of OPC, C. albicans-induced production of CXCL1/KC and CCL20 is dependent on the presence of candidalysin and EGFR, but independent of Als3. The production of IL-1α and IL-17A also requires candidalysin but is independent of Als3 and EGFR. The production of TNFα requires Als1, Als3, and candidalysin. Collectively, these results delineate the complex interplay among host cell receptors EphA2 and EGFR and C. albicans virulence factors Als1, Als3 and candidalysin during the induction of OPC and the resulting oral inflammatory response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号