首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1952篇
  免费   138篇
  2023年   3篇
  2022年   3篇
  2021年   44篇
  2020年   20篇
  2019年   32篇
  2018年   54篇
  2017年   45篇
  2016年   47篇
  2015年   66篇
  2014年   70篇
  2013年   146篇
  2012年   155篇
  2011年   165篇
  2010年   91篇
  2009年   89篇
  2008年   127篇
  2007年   144篇
  2006年   139篇
  2005年   133篇
  2004年   125篇
  2003年   110篇
  2002年   125篇
  2001年   33篇
  2000年   11篇
  1999年   19篇
  1998年   19篇
  1997年   14篇
  1996年   15篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   6篇
  1979年   4篇
  1972年   1篇
  1969年   1篇
排序方式: 共有2090条查询结果,搜索用时 78 毫秒
951.
952.
The small G-protein ADP-ribosylation factor 6 (Arf6) belongs to the Ras GTPases superfamily and is mostly known for its actin remodeling functions and involvement in the processes of plasma membrane reorganization and vesicular transport. The majority of data indicates that Arf6 contributes to cancer progression through activation of cell motility and invasion. Alternatively, we found that the expression of a wild-type or a constitutively active Arf6 does not influence tumor cell motility and invasion but instead significantly stimulates cell proliferation and activates phospholipase D (PLD). Conversely the expression of a mutant Arf6 (Arf6N48I), that is, unable to interact with PLD has no effect on proliferation but promotes motility, invasion, and matrix degradation by uPA extracellular proteinase. Studying the mechanisms of Arf6-dependent stimulation of cell proliferation, we found some signaling pathways contributing to Arf6 promitogenic activity. Namely, we showed that Arf6 in a PLD-mTORC1-dependent manner activates S6K1 kinase, a well-known regulator of mitogen-stimulated translation initiation. Furthermore, we demonstrated an Arf6-dependent phosphorylation of mTORC1 downstream targets, 4E-BP1 and ribosomal S6 protein, confirming an existence of Arf6-PLD-mTORC1-S6K1/4E-BP1 signaling pathway and also demonstrated its impact on proliferation stimulation. Next, we found that Arf6 activation potentiates Erk1/2 and p38MAP kinases phosphorylation. Surprisingly, p38 opposite to Erk1/2 significantly contributes to Arf6-dependent proliferation increase promoting S6 ribosomal protein phosphorylation at Ser235/236 residues. Therefore, we demonstrated Arf6 proliferation stimulating activity and revealed PLD-mTORC1 and p38MAP kinase as Arf6 partners mediating promitogenic activity. These results highlight a new aspect of Arf6 functioning in cancer cell biology.  相似文献   
953.
Cidofovir or (S)-HPMPC is one of the three antiviral drugs that might be used for the treatment of orthopoxvirus infections. (S)-HPMPC and its 2,6-diaminopurine counterpart, (S)-HPMPDAP, have been described to select, in vitro, for drug resistance mutations in the viral DNA polymerase (E9L) gene of vaccinia virus (VACV). Here, to extend our knowledge of drug resistance development among orthopoxviruses, we selected, in vitro, camelpox viruses (CMLV) resistant to (S)-HPMPDAP and identified a single amino acid change, T831I, and a double mutation, A314V+A684V, within E9L. The production of recombinant CMLV and VACV carrying these amino acid substitutions (T831I, A314V, or A314V+A684V) demonstrated clearly their involvement in conferring reduced sensitivity to viral DNA polymerase inhibitors, including (S)-HPMPDAP. Both CMLV and VACV harboring the A314V change showed comparable drug-susceptibility profiles to various antivirals and similar impairments in viral growth. In contrast, the single change T831I and the double change A314V+A684V in VACV were responsible for increased levels of drug resistance and for cross-resistance to viral DNA polymerase antivirals that were not observed with their CMLV counterparts. Each amino acid change accounted for an attenuated phenotype of VACV in vivo. Modeling of E9L suggested that the T→I change at position 831 might abolish hydrogen bonds between E9L and the DNA backbone and have a direct impact on the incorporation of the acyclic nucleoside phosphonates. Our findings demonstrate that drug-resistance development in two related orthopoxvirus species may impact drug-susceptibility profiles and viral fitness differently.  相似文献   
954.
J. Neurochem. (2012) 122, 1129-1136. ABSTRACT: Urocortin 3 (also known as stresscopin) is an endogenous ligand for the corticotropin-releasing factor receptor 2 (CRF(2) ). Despite predominant G(s) coupling of CRF(2) , promiscuous coupling with other G proteins has been also associated with the activation of this receptor. As urocortin 3 has been involved in central cardiovascular regulation at hypothalamic and medullary sites, we examined its cellular effects on cardiac vagal neurons of nucleus ambiguus, a key area for the autonomic control of heart rate. Urocortin 3 (1?nM-1000?nM) induced a concentration-dependent increase in cytosolic Ca(2+) concentration that was blocked by the CRF(2) antagonist K41498. In the case of two consecutive treatments with urocortin 3, the second urocortin 3-induced Ca(2+) response was reduced, indicating receptor desensitization. The effect of urocortin 3 was abolished by pre-treatment with pertussis toxin and by inhibition of phospolipase C with U-73122. Urocortin 3 activated Ca(2+) influx via voltage-gated P/Q-type channels as well as Ca(2+) release from endoplasmic reticulum. Urocortin 3 promoted Ca(2+) release via inositol 1,4,5 trisphosphate receptors, but not ryanodine receptors. Our results indicate a novel Ca(2+) -mobilizing effect of urocortin 3 in vagal pre-ganglionic neurons of nucleus ambiguus, providing a cellular mechanism for a previously reported role for this peptide in parasympathetic cardiac regulation.  相似文献   
955.
To date, there are no safe and effective drugs available for protection against ionizing radiation damage. Therefore, a great need exists to identify and develop non-toxic agents that will be useful as radioprotectors or postirradiation therapies under a variety of operational scenarios. We have developed a new pharmacological agent, CBLB613 (a naturally occurring Mycoplasma-derived lipopeptide ligand for Toll-like receptor 2/6), as a novel radiation countermeasure. Using CD2F1 mice, we investigated CBLB613 for toxicity, immunogenicity, radioprotection, radiomitigation and pharmacokinetics. We also evaluated CBLB613 for its effects on cytokine induction and radiation-induced cytopenia in unirradiated and irradiated mice. The no-observable-adverse-effect level of CBLB613 was 1.79 mg/kg and 1 mg/kg for single and repeated doses, respectively. CBLB613 significantly protected mice against a lethal dose of (60)Co γ radiation. The dose reduction factor of CBLB613 as a radioprotector was 1.25. CBLB613 also mitigated the effects of (60)Co γ radiation on survival in mice. In both irradiated and unirradiated mice, the drug stimulated induction of interleukin-1β (IL-1β), IL-6, IL-10, IL-12, keratinocyte-derived chemokine, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor-1α. CBLB613 also reduced radiation-induced cytopenia and increased bone marrow cellularity in irradiated mice. Our immunogenicity study demonstrated that CBLB613 is not immunogenic in mice, indicating that it could be developed as a radioprotector and radiomitigator for humans against the potentially lethal effects of radiation exposure.  相似文献   
956.
Asp(299)Gly (D299G) and, to a lesser extent, Thr(399)Ile (T399I) TLR4 polymorphisms have been associated with gram-negative sepsis and other infectious diseases, but the mechanisms by which they affect TLR4 signaling are unclear. In this study, we determined the impact of the D299G and T399I polymorphisms on TLR4 expression, interactions with myeloid differentiation factor 2 (MD2), LPS binding, and LPS-mediated activation of the MyD88- and Toll/IL-1R resistance domain-containing adapter inducing IFN-β (TRIF) signaling pathways. Complementation of human embryonic kidney 293/CD14/MD2 transfectants with wild-type (WT) or mutant yellow fluorescent protein-tagged TLR4 variants revealed comparable total TLR4 expression, TLR4-MD2 interactions, and LPS binding. FACS analyses with anti-TLR4 Ab showed only minimal changes in the cell-surface levels of the D299G TLR4. Cells transfected with D299G TLR4 exhibited impaired LPS-induced phosphorylation of p38 and TANK-binding kinase 1, activation of NF-κB and IFN regulatory factor 3, and induction of IL-8 and IFN-β mRNA, whereas T399I TLR4 did not cause statistically significant inhibition. In contrast to WT TLR4, expression of the D299G mutants in TLR4(-/-) mouse macrophages failed to elicit LPS-mediated induction of TNF-α and IFN-β mRNA. Coimmunoprecipitation revealed diminished LPS-driven interaction of MyD88 and TRIF with the D299G TLR4 species, in contrast to robust adapter recruitment exhibited by WT TLR4. Thus, the D299G polymorphism compromises recruitment of MyD88 and TRIF to TLR4 without affecting TLR4 expression, TLR4-MD2 interaction, or LPS binding, suggesting that it interferes with TLR4 dimerization and assembly of intracellular docking platforms for adapter recruitment.  相似文献   
957.
958.
Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood. Here, we show that changes in intracellular dNTP levels affect replication dynamics in budding yeast in different ways. Upregulation of the activity of ribonucleotide reductase (RNR) increases elongation, indicating that dNTP pools are limiting for normal DNA replication. In contrast, inhibition of RNR activity with hydroxyurea (HU) induces a sharp transition to a slow-replication mode within minutes after S-phase entry. Upregulation of RNR activity delays this transition and modulates both fork speed and origin usage under replication stress. Interestingly, we also observed that chromosomal instability (CIN) mutants have increased dNTP pools and show enhanced DNA synthesis in the presence of HU. Since upregulation of RNR promotes fork progression in the presence of DNA lesions, we propose that CIN mutants adapt to chronic replication stress by upregulating dNTP pools.  相似文献   
959.
The integrity of the genome depends on diverse pathways that regulate DNA metabolism. Defects in these pathways result in genome instability, a hallmark of cancer. Deletion of ELG1 in budding yeast, when combined with hypomorphic alleles of PCNA results in spontaneous DNA damage during S phase that elicits upregulation of ribonucleotide reductase (RNR) activity. Increased RNR activity leads to a dramatic expansion of deoxyribonucleotide (dNTP) pools in G1 that allows cells to synthesize significant fractions of the genome in the presence of hydroxyurea in the subsequent S phase. Consistent with the recognized correlation between dNTP levels and spontaneous mutation, compromising ELG1 and PCNA results in a significant increase in mutation rates. Deletion of distinct genome stability genes RAD54, RAD55, and TSA1 also results in increased dNTP levels and mutagenesis, suggesting that this is a general phenomenon. Together, our data point to a vicious circle in which mutations in gatekeeper genes give rise to genomic instability during S phase, inducing expansion of the dNTP pool, which in turn results in high levels of spontaneous mutagenesis.  相似文献   
960.
The molecular evolution of asparagine-specific cysteine proteinases, called legumains, from plants and animals was analyzed using newly available related amino acid sequences from lower eukaryotes, bacteria and Archaea. The results suggest that genuine legumains originate from prokaryote pro-legumains. The evolutionary roots of genuine legumains from plants and animals descend from Parabasalia and Alveolata before developing into their respective separate branches headed by Chlorophyta and Placozoa. The branch of legumain-like plant/animal glycosylphosphatidyl inositol transamidases separated from the general evolutionary stem of legumains at the level of lower eukaryotes. Modeling of the 3D structure of a plant genuine legumain underlined the previously suggested similarity of the active site geometry of legumains with caspases, which are Asp-specific bacterial and eukaryote proteinases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号