首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1941篇
  免费   136篇
  2023年   3篇
  2022年   5篇
  2021年   43篇
  2020年   20篇
  2019年   29篇
  2018年   50篇
  2017年   44篇
  2016年   46篇
  2015年   65篇
  2014年   70篇
  2013年   146篇
  2012年   154篇
  2011年   165篇
  2010年   90篇
  2009年   88篇
  2008年   127篇
  2007年   144篇
  2006年   139篇
  2005年   133篇
  2004年   126篇
  2003年   110篇
  2002年   125篇
  2001年   33篇
  2000年   11篇
  1999年   19篇
  1998年   19篇
  1997年   14篇
  1996年   14篇
  1995年   10篇
  1994年   6篇
  1993年   8篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   6篇
  1979年   4篇
  1972年   1篇
  1969年   1篇
排序方式: 共有2077条查询结果,搜索用时 15 毫秒
71.
72.
73.

Background  

Carbon and nitrogen are two signals that influence plant growth and development. It is known that carbon- and nitrogen-signaling pathways influence one another to affect gene expression, but little is known about which genes are regulated by interactions between carbon and nitrogen signaling or the mechanisms by which the different pathways interact.  相似文献   
74.
Gene expression datasets are large and complex, having many variables and unknown internal structure. We apply independent component analysis (ICA) to derive a less redundant representation of the expression data. The decomposition produces components with minimal statistical dependence and reveals biologically relevant information. Consequently, to the transformed data, we apply cluster analysis (an important and popular analysis tool for obtaining an initial understanding of the data, usually employed for class discovery). The proposed self-organizing map (SOM)-based clustering algorithm automatically determines the number of 'natural' subgroups of the data, being aided at this task by the available prior knowledge of the functional categories of genes. An entropy criterion allows each gene to be assigned to multiple classes, which is closer to the biological representation. These features, however, are not achieved at the cost of the simplicity of the algorithm, since the map grows on a simple grid structure and the learning algorithm remains equal to Kohonen's one.  相似文献   
75.
We have carried out a small pool expression screen for modulators of the Wnt/beta-catenin pathway and identified Xenopus R-spondin2 (Rspo2) as a secreted activator of this cascade. Rspo2 is coexpressed with and positively regulated by Wnt signals and synergizes with Wnts to activate beta-catenin. Analyses of functional interaction with components of the Wnt/beta-catenin pathway suggest that Rspo2 functions extracellularly at the level of receptor ligand interaction. In addition to activating the Wnt/beta-catenin pathway, Rspo2 overexpression blocks Activin, Nodal, and BMP4 signaling in Xenopus, raising the possibility that it may negatively regulate the TGF-beta pathway. Antisense Morpholino experiments in Xenopus embryos and RNAi experiments in HeLa cells reveal that Rspo2 is required for Wnt/beta-catenin signaling. In Xenopus embryos depleted of Rspo2, the muscle markers myoD and myf5 fail to be activated and later muscle development is impaired. Thus, Rspo2 functions in a positive feedback loop to stimulate the Wnt/beta-catenin cascade.  相似文献   
76.
Genomic diversity of anonymous regions across the genome, most probably including coding and noncoding amplified fragment length polymorphisms (AFLPs), was examined in 20 individuals of the blind mole-rat, Spalax galili, one of four allospecies of the Spalax ehrenbergi superspecies of blind subterranean mole-rats in Israel. We compared 10 individuals from two nearby populations in Upper Galilee, separated by only a few dozen to hundreds of metres and living in two sharply contrasting ecologies: white chalk and rendzina soil with Sarcopterium spinosum and Majorana syriaca versus black volcanic basalt soil with Carlina hispanica-Psorelea bitominosa and Alhagi graecorum plant formations. The microsite tested ranged in an area of less than 10000 m2. Out of 729 AFLP loci, 433 (59.4%) were polymorphic, with 211 soil unique alleles. Genetic polymorphism was significantly higher on the ecologically more xeric and stressful chalky rendzina soil than on the neighbouring mesic basalt soil. This is a remarkable pattern for a mammal that can disperse each generation between tens to hundreds of metres. These results cannot be explained by migration (which causes homogenization) or by chance (which will exclude sharp genomic soil divergence). Natural selection is the only evolutionary adaptive force that can cause genetic divergence across the genome matching the sharp microscale ecological contrast.  相似文献   
77.
In contrast with hematopoietic cells and fibroblasts, which express mainly one form of protein tyrosine phosphatase (PTP) SHP-1 or SHP-2, epithelial cells like A431, HeLa, and 293 express both forms of PTP. These two PTP regulate NFkappaB activity differently; SHP-1 inhibits and SHP-2 stimulates NFkappaB activation. In epithelial cells the process of NFkappaB activation depends on the combination of two PTP activities. The activity of PTP SHP-1 dominates in this tandem according to our data. The signal regulatory protein (SIRPalpha) is the adapter and the substrate of PTP SHP-1 and SHP-2. We investigated the role of SIRPalpha and its dominant negative mutant in PTP activities in 293 cells. The overexpression of wild-type SIRPalpha suppresses the activities of both PTP, but has a stronger effect on PTP SHP-2, especially when this protein is overexpressed in 293 cells. In contrast with wild-type SIRPalpha, its dominant negative mutant acts predominantly against PTP SHP-1, and can be detected in the complex with PTP SHP-1. The expression of dominant negative mutant of SIRPalpha has an effect similar to the expression of dominant negative PTP SHP-1 in the process of NFkappaB activation.  相似文献   
78.
We have investigated transforming growth factor beta (TGF-beta)-mediated induction of actin stress fibers in normal and metastatic epithelial cells. We found that stress fiber formation requires de novo protein synthesis, p38Mapk and Smad signaling. We show that TGF-beta via Smad and p38Mapk up-regulates expression of actin-binding proteins including high-molecular-weight tropomyosins, alpha-actinin and calponin h2. We demonstrate that, among these proteins, tropomyosins are both necessary and sufficient for TGF-beta induction of stress fibers. Silencing of tropomyosins with short interfering RNAs (siRNAs) blocks stress fiber assembly, whereas ectopic expression of tropomyosins results in stress fibers. Ectopic-expression and siRNA experiments show that Smads mediate induction of tropomyosins and stress fibers. Interestingly, TGF-beta induction of stress fibers was not accompanied by changes in the levels of cofilin phosphorylation. TGF-beta induction of tropomyosins and stress fibers are significantly inhibited by Ras-ERK signaling in metastatic breast cancer cells. Inhibition of the Ras-ERK pathway restores TGF-beta induction of tropomyosins and stress fibers and thereby reduces cell motility. These results suggest that induction of tropomyosins and stress fibers play an essential role in TGF-beta control of cell motility, and the loss of this TGF-beta response is a critical step in the acquisition of metastatic phenotype by tumor cells.  相似文献   
79.
80.
Despite the progress in understanding the base excision repair (BER) pathway it is still unclear why known mutants deficient in DNA glycosylases that remove oxidised bases are not sensitive to oxidising agents. One of the back-up repair pathways for oxidative DNA damage is the nucleotide incision repair (NIR) pathway initiated by two homologous AP endonucleases: the Nfo protein from Escherichia coli and Apn1 protein from Saccharomyces cerevisiae. These endonucleases nick oxidatively damaged DNA in a DNA glycosylase-independent manner, providing the correct ends for DNA synthesis coupled to repair of the remaining 5′-dangling nucleotide. NIR provides an advantage compared to DNA glycosylase-mediated BER, because AP sites, very toxic DNA glycosylase products, do not form. Here, for the first time, we have characterised the substrate specificity of the Apn1 protein towards 5,6-dihydropyrimidine, 5-hydroxy-2′-deoxyuridine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine deoxynucleotide. Detailed kinetic comparisons of Nfo, Apn1 and various DNA glycosylases using different DNA substrates were made. The apparent Km and kcat/Km values of the reactions suggest that in vitro DNA glycosylase/AP lyase is somewhat more efficient than the AP endonuclease. However, in vivo, using cell-free extracts from paraquat-induced E.coli and from S.cerevisiae, we show that NIR is one of the major pathways for repair of oxidative DNA base damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号