首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   26篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   9篇
  2017年   3篇
  2016年   17篇
  2015年   14篇
  2014年   24篇
  2013年   29篇
  2012年   28篇
  2011年   22篇
  2010年   13篇
  2009年   17篇
  2008年   16篇
  2007年   15篇
  2006年   13篇
  2005年   12篇
  2004年   11篇
  2003年   21篇
  2002年   16篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有335条查询结果,搜索用时 218 毫秒
91.
92.
93.
Telomeres are nucleoprotein structures that cap the ends of chromosomes and thereby protect their stability and integrity. In the presence of telomerase, the enzyme that synthesizes telomeric repeats, telomere length is controlled primarily by Rap1p, the budding yeast telomeric DNA binding protein which, through its C-terminal domain, nucleates a protein complex that limits telomere lengthening. In the absence of telomerase, telomeres shorten with every cell division, and eventually, cells enter replicative senescence. We have set out to identify the telomeric property that determines the replicative capacity of telomerase-deficient budding yeast. We show that in cells deficient for both telomerase and homologous recombination, replicative capacity is dependent on telomere length but not on the binding of Rap1p to the telomeric repeats. Strikingly, inhibition of Rap1p binding or truncation of the C-terminal tail of Rap1p in Kluyveromyces lactis and deletion of the Rap1p-recruited complex in Saccharomyces cerevisiae lead to a dramatic increase in replicative capacity. The study of the role of telomere binding proteins and telomere length on replicative capacity in yeast may have significant implications for our understanding of cellular senescence in higher organisms.  相似文献   
94.
In neurons, posttranslational modification by palmitate regulates the trafficking and function of signaling molecules, neurotransmitter receptors, and associated synaptic scaffolding proteins. However, the enzymatic machinery involved in protein palmitoylation has remained elusive. Here, using biochemical assays, we show that huntingtin (htt) interacting protein, HIP14, is a neuronal palmitoyl transferase (PAT). HIP14 shows remarkable substrate specificity for neuronal proteins, including SNAP-25, PSD-95, GAD65, synaptotagmin I, and htt. Conversely, HIP14 is catalytically invariant toward paralemmin and synaptotagmin VII. Exogenous HIP14 enhances palmitoylation-dependent vesicular trafficking of several acylated proteins in both heterologous cells and neurons. Moreover, interference with endogenous expression of HIP14 reduces clustering of PSD-95 and GAD65 in neurons. These findings define HIP14 as a mammalian palmitoyl transferase involved in the palmitoylation and trafficking of multiple neuronal proteins.  相似文献   
95.
96.
Gibberellin regulates post-microsporogenesis processes in petunia anthers   总被引:3,自引:0,他引:3  
Previous studies have suggested that gibberellins (GAs) are produced in petunia anthers and transported to the corolla to induce growth and pigmentation. In this work, we studied the role of GA in the regulation of anther development. When petunia plants were treated with the GA-biosynthesis inhibitor paclobutrazol, anther development was arrested. Microscopic analysis of these anthers revealed that paclobutrazol inhibits post-meiotic developmental processes. The treated anthers contained pollen grains but the connective tissue and tapetum cells were degenerated. A similar phenotype was obtained when the Arabidopsis GA-signal repressor, SPY, was over-expressed in transgenic petunia plants, i.e. anther development was arrested following microsporogenesis. The expression of the GA-induced gene, GIP , can be used in petunia as a molecular marker to study GA responses. GA3 treatment of young anthers promoted, and paclobutrazol inhibited, GIP expression, suggesting that the hormone controls the natural activation of the gene in the anthers. Analyses of GIP expression during anther development revealed that the gene is induced only after microsporogenesis. This observation further suggests a role for GA in the regulation of post-meiotic processes during petunia anther development.  相似文献   
97.
Fc receptors modulate inflammatory processes, including phagocytosis, serotonin and histamine release, superoxide production, and secretion of cytokines. Aggregation of FcγRIIa, the low-affinity receptor for monomeric IgG, activates nonreceptor protein tyrosine kinases such as Lyn, Hck, and Syk, potentially driving the phosphorylation of the downstream adaptor proteins, including Cbl and/or Nck. Previous work from our laboratory using interferon-γ-differentiated U937 (U937IF) myeloid cells investigated mechanisms which regulate Fcγ receptor-induced assembly of adaptor complexes. Herein we report that FcγRII receptor signaling in U937IF and HEL cells involves Cbl and Nck, suggesting that Cbl–Nck interactions may link FcγRII to downstream activation of Pak kinase. FcγRII crosslinking induced the phosphorylation of Cbl and Nck on tyrosine. The αCbl immunoprecipitations revealed constitutive binding of Nck and Grb2 to Cbl and FcγRII-inducible binding of CrkL to Cbl. The interactions of Cbl with Nck and CrkL were phosphorylation dependent since dephosphorylation of cellular proteins with potato acid phosphatase abrogated binding. GST–Nck fusion protein pulldown experiments show that Cbl and Pak1 bind to the second SH3 domain of Nck. A specific Src inhibitor, PP1, was shown to completely abrogate the FcγR-induced superoxide response, correlating with a decrease in Cbl and Nck tyrosine phosphorylation. Our results provide the first evidence that Src is required for FcγR activation of the respiratory burst in myeloid cells and suggest that Cbl–Nck, Cbl–Pak1, and Nck–Pak1 interactions may regulate this response.  相似文献   
98.
Summary RP135 is a 24-residue peptide corresponding to the principal neutralizing determinant of the envelope glycoprotein gp120 of the human immunodeficiency virus type 1. We have studied the conformation of RP135 in complex with a neutralizing antibody 0.5β raised against gp120 by 2D NMR spectroscopy. The antigenic determinant recognized by this antibody was mapped using a combination of HOHAHA and ROESY measurements, in which resonances of the Fab and the tightly bound peptide residues are eliminated and the mobile residues of the bound peptide are sequentially assigned. We found that residues Ser6-Thr19 are part of the epitope, while Lys5 and Ile20 are at its boundaries. Difference spectroscopy was applied to study the conformation of the bound peptide representing the epitope within the 52 kDa of the Fab complex. Specific residues of the peptide were deuterated or replaced and the difference between the NOESY spectrum of the complex with the unlabeled residue and the NOESY spectrum of the complex with the modified residue revealed the interactions of the labeled residue both within the peptide and with the Fab fragment. A total of 122 distance restraints derived from the difference spectra enabled the calculation of the structure of the bound peptide. The peptide forms a 10-residue loop, while the two segments flanking this loop interact extensively with each other and possibly form anti-parallel β-strands. The loop conformation could be observed due to the unusual large size (17 residues) of the antigenic determinant recognized by 0.5β.  相似文献   
99.
Therapeutic cloning by somatic cell nuclear transfer offers potential for treatment of a wide range of degenerative disease. Nuclear transplantation with neo (r)-marked somatic nuclei from 10-13-year-old cows was used to generate cloned bovine fetuses. Clone fetal liver (FL) hematopoietic stem cells (HSC) were transplanted into two busulfan-treated and one untreated nuclear donor cows. Hematopoiesis was monitored over 13-16 months by in vitro progenitor and HSC assays. Chimerism was demonstrated by PCR in blood, marrow, lymph nodes, and endothelium, peaking at levels of 9-17% in blood granulocytes but at lower levels in lymphocyte subsets (0.1-0.01%). Circulating progenitors showed high levels of chimerism (up to 60% neo (r+)) with persisting fetal features. At sacrifice, the animal that had no pre-transplant myelosupression showed persisting donor cells in blood and lymph nodes, and in marrow 0.25% of progenitor cells and a detectable fraction of stem cells were neo (r+). The fetal HSC showed a 10-fold competition advantage over adult HSC. Cloning generated histocompatible HSC capable of long-term multilineage engraftment in a large animal model.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号