首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1170篇
  免费   77篇
  1247篇
  2024年   2篇
  2023年   7篇
  2022年   20篇
  2021年   54篇
  2020年   27篇
  2019年   35篇
  2018年   38篇
  2017年   40篇
  2016年   37篇
  2015年   77篇
  2014年   60篇
  2013年   84篇
  2012年   119篇
  2011年   108篇
  2010年   62篇
  2009年   57篇
  2008年   76篇
  2007年   76篇
  2006年   64篇
  2005年   51篇
  2004年   37篇
  2003年   41篇
  2002年   31篇
  2001年   7篇
  2000年   2篇
  1999年   10篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
排序方式: 共有1247条查询结果,搜索用时 6 毫秒
101.
Degradation of Cdc25A phosphatase is an ubiquitous feature of stress. There are some discrepancies in the reported roles for different phosphorylation sites in the regulation of Cdc25A stability. Using a panel of doxycycline-inducible phosphorylation mutants we show that the stability of human Cdc25A protein is dependent upon phosphorylation at S75. In non-stressed conditions and in non-mitotic cells, Cdc25A is unstable and its stability is regulated in a Chk1-dependent manner. During mitosis, Cdc25A becomes stable and does not undergo degradation after DNA damage. We further show that Chk1 kinase regulates Cdc25A stability after UV irradiation. Similar to Chk1 kinase, p38 MAPK controls Cdc25A protein level after osmotic stress. Using phospho-specific antibodies, we find that both kinases can phosphorylate S75 and S123 in vitro. Inactivation of either Chk1 after UV-irradiation or p38 MAPK after osmotic stress prevents activation of a S phase checkpoint and S75 and S123 phosphorylation. However, introduction of stable Cdc25A (S75A or S75/123A) proteins is not sufficient to overcome this checkpoint. We propose that regulation of human Cdc25A stability by its phosphorylation at S75 may contribute to S phase checkpoint activation only in cooperation with other regulatory mechanisms.  相似文献   
102.
(E)-9-(1-pyrenyl)-4-hydroxynon-2-enal (FHNE), a fluorescent probe of (E)-4-hydroxynon-2-enal (HNE) is synthesised in seven steps and in 35% overall yield, starting from commercially available 1-pyrencarboxyaldehyde. When incubated with cultured HeLa cells this fluorescent probe penetrates cells and particularly concentrates in the region surrounding the nucleus. As the parent compound, HNE it is able to induce the activation of heat shock factor (HSF) and it is able to induce the binding of HSF to heat shock element (HSE).  相似文献   
103.
A new dose-finding design for bivariate outcomes   总被引:2,自引:0,他引:2  
Ivanova A 《Biometrics》2003,59(4):1001-1007
For some drugs, toxicity events lead to early termination of treatment before a therapeutic response is observed. That is, there are three possible outcomes: toxicity (therapeutic response unknown), therapeutic response without toxicity, and no response with no toxicity. The optimal dose is the dose that maximizes the probability of the joint event, response, and no toxicity. The optimal safe dose is the dose, from among the doses with toxicity rate less than the maximum tolerable level, that maximizes the probability of response and no toxicity. We present a new sequential design to maximize the number of subjects assigned in the neighborhood of the optimal safe dose in a dose-finding trial with two outcomes.  相似文献   
104.
12-Hydroxyjasmonate, also known as tuberonic acid, was first isolated from Solanum tuberosum and was shown to have tuber-inducing properties. It is derived from the ubiquitously occurring jasmonic acid, an important signaling molecule mediating diverse developmental processes and plant defense responses. We report here that the gene AtST2a from Arabidopsis thaliana encodes a hydroxyjasmonate sulfotransferase. The recombinant AtST2a protein was found to exhibit strict specificity for 11- and 12-hydroxyjasmonate with K(m) values of 50 and 10 microm, respectively. Furthermore, 12-hydroxyjasmonate and its sulfonated derivative are shown to be naturally occurring in A. thaliana. The exogenous application of methyljasmonate to A. thaliana plants led to increased levels of both metabolites, whereas treatment with 12-hydroxyjasmonate led to increased level of 12-hydroxyjasmonate sulfate without affecting the endogenous level of jasmonic acid. AtST2a expression was found to be induced following treatment with methyljasmonate and 12-hydroxyjasmonate. In contrast, the expression of the methyljasmonate-responsive gene Thi2.1, a marker gene in plant defense responses, is not induced upon treatment with 12-hydroxyjasmonate indicating the existence of independent signaling pathways responding to jasmonic acid and 12-hydroxyjasmonic acid. Taken together, the results suggest that the hydroxylation and sulfonation reactions might be components of a pathway that inactivates excess jasmonic acid in plants. Alternatively, the function of AtST2a might be to control the biological activity of 12-hydroxyjasmonic acid.  相似文献   
105.
Type III protein secretion (TTS) is catalyzed by translocases that span both membranes of Gram-negative bacteria. A hydrophilic TTS component homologous to F1/V1-ATPases is ubiquitous and essential for secretion. We show that hrcN encodes the putative TTS ATPase of Pseudomonas syringae pathovar phaseolicola and that HrcN is a peripheral protein that assembles in clusters at the membrane. A decahistidinyl HrcN derivative was overexpressed in Escherichia coli and purified to homogeneity in a folded state. Hydrodynamic analysis, cross-linking, and electron microscopy revealed four distinct HrcN forms: I, 48 kDa (monomer); II, approximately 300 kDa (putative hexamer); III, 575 kDa (dodecamer); and IV, approximately 3.5 MDa. Form III is the predominant form of HrcN at the membrane, and its ATPase activity is dramatically stimulated (>700-fold) over the basal activity of Form I. We propose that TTS ATPases catalyze protein translocation as activated homo-oligomers at the plasma membrane.  相似文献   
106.
107.
Emter R  Heese-Peck A  Kralli A 《FEBS letters》2002,521(1-3):57-61
Diagnosis and circumvention of multi-drug resistance requires an understanding of the underlying cellular mechanisms. In the model organism Saccharomyces cerevisiae, deletions of PDR5 or ERG6 increase sensitivity to many small lipophilic drugs. Pdr5p is a plasma membrane ATP-binding cassette transporter that actively exports drugs, thereby lowering their intracellular levels. The mechanism by which ERG6, an enzyme in sterol biosynthesis, affects drug accumulation is less clear. We show here that ERG6 limits the rate of passive drug diffusion across the membrane, without affecting Pdr5p-mediated drug export. Consistent with their action by distinct mechanisms, PDR5 and ERG6 effects on drug accumulation are additive.  相似文献   
108.
Death-associated protein kinase (DAPK) is a pro-apoptotic, calmodulin (CaM)-regulated protein kinase whose mRNA levels increase following cerebral ischemia. However, the relationship between DAPK catalytic activity and cerebral ischemia is not known. This knowledge is critical as DAPK function is dependent on the catalytic activity of its kinase domain. Consequently, we examined DAPK catalytic activity in a rat model of neonatal cerebral hypoxia-ischemia (HI). An increase in DAPK specific activity was found in homogenates of the hippocampus from the injured right hemisphere, compared to the uninjured left hemisphere, 7 days after injury. The results raised the possibility that an upregulation of DAPK activity might be associated with the recovery phase of HI, during which neuronal repair and differentiation are initiated. Therefore, we examined the change of DAPK in an experimentally tractable cell culture model of neuronal differentiation. We found that DAPK catalytic activity and protein levels increase after nerve growth factor (NGF)-induced differentiation of rat PC12 cells. These results suggest that DAPK may have a previously unappreciated role in neuronal development or recovery from injury, and that potential future therapies targeting DAPK should consider a restricted time window.  相似文献   
109.

Aim

Desert springs or oases are the only permanent mesic environments in highly water-limited arid regions. Oases have immense cultural, evolutionary and ecological importance for people and a high number of endemic and relic species. Nevertheless, they are also highly vulnerable ecosystems, with invasive species, overexploitation and climate change being the primary threats. We used the arthropod communities' spatiotemporal diversity and distribution patterns as a proxy to understand biodiversity dynamics in two geographically close but ecologically contrasting and highly threatened ecosystems: deserts and oases.

Location

Baja California Peninsula, Mexico.

Methods

Arthropod communities at five oases and surrounding desert scrub areas were sampled in two seasons. Using DNA metabarcoding and traditional taxonomic surveys, we tried to identify what biotic and abiotic characteristics of the habitat are important drivers of arthropod diversity and how these characteristics can change across spatial and temporal scales.

Results

Over 6200 individuals representing 23 orders were collected. In oasis samples, the community composition fluctuated more in space (i.e. among sites) than in time (i.e. seasons). Thus, seasonal changes did not affect oasis community diversity and composition, but the dissimilarity among sites increased with geographic distance. Moreover, anthropic activities negatively correlated with arthropod diversity in oases. On the other hand, the season, geography (e.g. latitude) and biotic characteristics of the habitat (e.g. sampled scrub species) significantly affected the diversity and composition of the desert arthropod communities.

Main Conclusions

Neutral dynamics (e.g. historical climatic events, dispersal limitation and spatial component) and human impact significantly influenced the biodiversity patterns of each oasis. In contrast, the habitat's seasonal variation and biotic characteristics were the most important variables influencing the diversity of the desert communities. Baja California oases harbour distinct invertebrate communities; therefore, each oasis should be conserved individually to preserve these unique assemblages.  相似文献   
110.
Pancreatic β-cell apoptosis induced by palmitate requires high glucose concentrations. Ceramides have been suggested to be important mediators of glucolipotoxicity-induced β-cell apoptosis. In INS-1 β-cells, 0.4 mM palmitate with 5 mM glucose increased the levels of dihydrosphingosine and dihydroceramides, two lipid intermediates in the de novo biosynthesis of ceramides, without inducing apoptosis. Increasing glucose concentrations to 30 mM amplified palmitate-induced accumulation of dihydrosphingosine and the formation of (dihydro)ceramides. Of note, glucolipotoxicity specifically induced the formation of C(18:0), C(22:0) and C(24:1) (dihydro)ceramide molecular species, which was associated with the up-regulation of CerS4 (ceramide synthase 4) levels. Fumonisin-B1, a ceramide synthase inhibitor, partially blocked apoptosis induced by glucolipotoxicity. In contrast, apoptosis was potentiated in the presence of D,L-threo-1-phenyl-2-palmitoylamino-3-morpholinopropan-1-ol, an inhibitor of glucosylceramide synthase. Moreover, overexpression of CerS4 amplified ceramide production and apoptosis induced by palmitate with 30 mM glucose, whereas down-regulation of CerS4 by siRNA (short interfering RNA) reduced apoptosis. CerS4 also potentiates ceramide accumulation and apoptosis induced by another saturated fatty acid: stearate. Collectively, our results suggest that glucolipotoxicity induces β-cell apoptosis through a dual mechanism involving de novo ceramide biosynthesis and the formation of ceramides with specific N-acyl chain lengths rather than an overall increase in ceramide content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号