首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7213篇
  免费   746篇
  国内免费   3篇
  2024年   9篇
  2023年   26篇
  2022年   27篇
  2021年   180篇
  2020年   84篇
  2019年   129篇
  2018年   157篇
  2017年   140篇
  2016年   209篇
  2015年   376篇
  2014年   388篇
  2013年   485篇
  2012年   646篇
  2011年   627篇
  2010年   412篇
  2009年   406篇
  2008年   476篇
  2007年   497篇
  2006年   453篇
  2005年   395篇
  2004年   422篇
  2003年   334篇
  2002年   296篇
  2001年   64篇
  2000年   42篇
  1999年   59篇
  1998年   78篇
  1997年   45篇
  1996年   35篇
  1995年   29篇
  1994年   35篇
  1993年   24篇
  1992年   25篇
  1991年   16篇
  1990年   21篇
  1989年   27篇
  1988年   19篇
  1987年   23篇
  1986年   17篇
  1985年   21篇
  1984年   16篇
  1983年   16篇
  1982年   22篇
  1981年   19篇
  1980年   9篇
  1977年   11篇
  1976年   8篇
  1975年   8篇
  1974年   17篇
  1967年   10篇
排序方式: 共有7962条查询结果,搜索用时 19 毫秒
81.
Ubiquitin-mediated proteolysis is a key regulatory process in cell cycle progression. The Skp1-Cul1-F-box (SCF) and anaphase-promoting complex (APC) ubiquitin ligases target numerous components of the cell cycle machinery for destruction. Throughout the cell cycle, these ligases cooperate to maintain precise levels of key regulatory proteins, and indirectly, each other. Recently, we have identified the deubiquitinase USP37 as a regulator of the cell cycle. USP37 expression is cell cycle-regulated, being expressed in late G1 and ubiquitinated by APCCdh1 in early G1. Here we report that in addition to destruction at G1, a major fraction of USP37 is degraded at the G2/M transition, prior to APC substrates and similar to SCFβTrCP substrates. Consistent with this hypothesis, USP37 interacts with components of the SCF in a βTrCP-dependent manner. Interaction with βTrCP and subsequent degradation is phosphorylation-dependent and is mediated by the Polo-like kinase (Plk1). USP37 is stabilized in G2 by depletion of βTrCP as well as chemical or genetic manipulation of Plk1. Similarly, mutation of the phospho-sites abolishes βTrCP binding and renders USP37 resistant to Plk1 activity. Expression of this mutant hinders the G2/M transition. Our data demonstrate that tight regulation of USP37 levels is required for proper cell cycle progression.  相似文献   
82.
83.
84.
Diverse communities of fungi and bacteria in deadwood mediate wood decay. While rates of decomposition vary greatly among woody species and spatially distinct habitats, the relative importance of these factors in structuring microbial communities and whether these shift over time remains largely unknown. We characterized fungal and bacterial diversity within pieces of deadwood that experienced 6.3–98.8% mass loss while decaying in common garden ‘rotplots’ in a temperate oak-hickory forest in the Ozark Highlands, MO, USA. Communities were isolated from 21 woody species that had been decomposing for 1–5 years in spatially distinct habitats at the landscape scale (top and bottom of watersheds) and within stems (top and bottom of stems). Microbial community structure varied more strongly with wood traits than with spatial locations, mirroring the relative role of these factors on decay rates on the same pieces of wood even after 5 years. Co-occurring fungal and bacterial communities persistently influenced one another independently from their shared environmental conditions. However, the relative influence of wood construction versus spatial locations differed between fungi and bacteria, suggesting that life history characteristics of these clades structure diversity differently across space and time in decomposing wood.  相似文献   
85.
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro‐organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function . Trait‐based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and ‐omics‐based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait‐based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.  相似文献   
86.
87.
The key to understanding the evolutionary origin and modification of phenotypic traits is revealing the responsible underlying developmental genetic mechanisms. An important organismal trait of ray‐finned fishes is the gas bladder, an air‐filled organ that, in most fishes, functions for buoyancy control, and is homologous to the lungs of lobe‐finned fishes. The critical morphological difference between lungs and gas bladders, which otherwise share many characteristics, is the general direction of budding during development. Lungs bud ventrally and the gas bladder buds dorsally from the anterior foregut. We investigated the genetic underpinnings of this ventral‐to‐dorsal shift in budding direction by studying the expression patterns of known lung genes (Nkx2.1, Sox2, and Bmp4) during the development of lungs or gas bladder in three fishes: bichir, bowfin, and zebrafish. Nkx2.1 and Sox2 show reciprocal dorsoventral expression patterns during tetrapod lung development and are important regulators of lung budding; their expression during bichir lung development is conserved. Surprisingly, we find during gas bladder development, Nkx2.1 and Sox2 expression are inconsistent with the hypothesis that they regulate the direction of gas bladder budding. Bmp4 is expressed ventrally during lung development in bichir, akin to the pattern during mouse lung development. During gas bladder development, Bmp4 is not expressed. However, Bmp16, a paralogue of Bmp4, is expressed dorsally in the developing gas bladder of bowfin. Bmp16 is present in the known genomes of Actinopteri (ray‐finned fishes excluding bichir) but absent from mammalian genomes. We hypothesize that Bmp16 was recruited to regulate gas bladder development in the Actinopteri in place of Bmp4.  相似文献   
88.
The coastal ecosystems of temperate North America provide a variety of ecosystem services including high rates of carbon sequestration. Yet, little data exist for the carbon stocks of major tidal wetland types in the Pacific Northwest, United States. We quantified the total ecosystem carbon stocks (TECS) in seagrass, emergent marshes, and forested tidal wetlands, occurring along increasing elevation and decreasing salinity gradients. The TECS included the total aboveground carbon stocks and the entire soil profile (to as deep as 3 m). TECS significantly increased along the elevation and salinity gradients: 217 ± 60 Mg C/ha for seagrass (low elevation/high salinity), 417 ± 70 Mg C/ha for low marsh, 551 ± 47 Mg C/ha for high marsh, and 1,064 ± 38 Mg C/ha for tidal forest (high elevation/low salinity). Soil carbon stocks accounted for >98% of TECS in the seagrass and marsh communities and 78% in the tidal forest. Soils in the 0–100 cm portion of the profile accounted for only 48%–53% of the TECS in seagrasses and marshes and 34% of the TECS in tidal forests. Thus, the commonly applied limit defining TECS to a 100 cm depth would greatly underestimate both carbon stocks and potential greenhouse gas emissions from land‐use conversion. The large carbon stocks coupled with other ecosystem services suggest value in the conservation and restoration of temperate zone tidal wetlands through climate change mitigation strategies. However, the findings suggest that long‐term sea‐level rise effects such as tidal inundation and increased porewater salinity will likely decrease ecosystem carbon stocks in the absence of upslope wetland migration buffer zones.  相似文献   
89.
BackgroundLymphatic filariasis (LF) is targeted for elimination in Sierra Leone. Epidemiological coverage of mass drug administration (MDA) with ivermectin and albendazole had been reported >65% in all 12 districts annually. Eight districts qualified to implement transmission assessment survey (TAS) in 2013 but were deferred until 2017 due to the Ebola outbreak (2014–2016). In 2017, four districts qualified for conducting a repeat pre-TAS after completing three more rounds of MDA and the final two districts were also eligible to implement a pre-TAS.Methodology/Principal findingsFor TAS, eight districts were surveyed as four evaluation units (EU). A school-based survey was conducted in children aged 6–7 years from 30 clusters per EU. For pre-TAS, one sentinel and one spot check site per district (with 2 spot check sites in Bombali) were selected and 300–350 persons aged 5 years and above were selected. For both surveys, finger prick blood samples were tested using the Filariasis Test Strips (FTS).For TAS, 7,143 children aged 6–7 years were surveyed across four EUs, and positives were found in three EUs, all below the critical cut-off value for each EU. For the repeat pre-TAS/pre-TAS, 3,994 persons over five years of age were surveyed. The Western Area Urban had FTS prevalence of 0.7% in two sites and qualified for TAS, while other five districts had sites with antigenemia prevalence >2%: 9.1–25.9% in Bombali, 7.5–19.4% in Koinadugu, 6.1–2.9% in Kailahun, 1.3–2.3% in Kenema and 1.7% - 3.7% in Western Area Rural.Conclusions/SignificanceEight districts in Sierra Leone have successfully passed TAS1 and stopped MDA, with one more district qualified for conducting TAS1, a significant progress towards LF elimination. However, great challenges exist in eliminating LF from the whole country with repeated failure of pre-TAS in border districts. Effort needs to be intensified to achieve LF elimination.  相似文献   
90.
Historically, therapeutic protein production in Chinese hamster ovary (CHO) cells has been accomplished by random integration (RI) of expression plasmids into the host cell genome. More recently, the development of targeted integration (TI) host cells has allowed for recombination of plasmid DNA into a predetermined genomic locus, eliminating one contributor to clone-to-clone variability. In this study, a TI host capable of simultaneously integrating two plasmids at the same genomic site was used to assess the effect of antibody heavy chain and light chain gene dosage on antibody productivity. Our results showed that increasing antibody gene copy number can increase specific productivity, but with diminishing returns as more antibody genes are added to the same TI locus. Random integration of additional antibody DNA copies in to a targeted integration cell line showed a further increase in specific productivity, suggesting that targeting additional genomic sites for gene integration may be beneficial. Additionally, the position of antibody genes in the two plasmids was observed to have a strong effect on antibody expression level. These findings shed light on vector design to maximize production of conventional antibodies or tune expression for proper assembly of complex or bispecific antibodies in a TI system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号