首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   21篇
  国内免费   1篇
  2023年   1篇
  2021年   8篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   3篇
  2015年   8篇
  2014年   11篇
  2013年   9篇
  2012年   23篇
  2011年   20篇
  2010年   16篇
  2009年   10篇
  2008年   22篇
  2007年   20篇
  2006年   19篇
  2005年   14篇
  2004年   20篇
  2003年   11篇
  2002年   17篇
  2001年   3篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1973年   2篇
排序方式: 共有294条查询结果,搜索用时 46 毫秒
11.
The cyclosome/anaphase-promoting complex is a multisubunit ubiquitin ligase that targets for degradation mitotic cyclins and some other cell cycle regulators in exit from mitosis. It becomes enzymatically active at the end of mitosis. The activation of the cyclosome is initiated by its phosphorylation, a process necessary for its conversion to an active form by the ancillary protein Cdc20/Fizzy. Previous reports have implicated either cyclin-dependent kinase 1-cyclin B or polo-like kinase as the major protein kinase that directly phosphorylates and activates the cyclosome. These conflicting results could be due to the use of partially purified cyclosome preparations or of immunoprecipitated cyclosome, whose interactions with protein kinases or ancillary factors may be hampered by binding to immobilized antibody. To examine this problem, we have purified cyclosome from HeLa cells by a combination of affinity chromatography and ion exchange procedures. With the use of purified preparations, we found that both cyclin-dependent kinase 1-cyclin B and polo-like kinase directly phosphorylated the cyclosome, but the pattern of the phosphorylation of the different cyclosome subunits by the two protein kinases was not similar. Each protein kinase could restore only partially the cyclin-ubiquitin ligase activity of dephosphorylated cyclosome. However, following phosphorylation by both protein kinases, an additive and nearly complete restoration of cyclin-ubiquitin ligase activity was observed. It is suggested that this joint activation may be due to the complementary phosphorylation of different cyclosome subunits by the two protein kinases.  相似文献   
12.
A hypothesis describing the mechanism of photoactive protochlorophyllide (P) photoreduction in vivo, relating mainly to the molecular nature of the intermediates, is proposed. The hypothesis is compatible with currently published experimental data. After illumination of etiolated barley leaves at 143 to 153 K, the absorption of P remains essentially unchanged, but a new absorption band at 690 nm is observed. Appearance of this new intermediate enables to distinguish between light and dark stages of the photoconversion reaction. When returned to the higher temperature in the dark, the treated leaves begin accumulating chlorophyllide (Chlide), concomitant with the disappearance of the 690-nm band. The decay time of the excited P (P*) is estimated at 300 ps, which approximates the time constant of photoinduced electron transfer (ET). It is suggested that the charge-transfer complex (CTC) in its ground state (GS) (ground state of CTC formed by the partial (δ) electron transfer), i.e. (Pδ−•••H–Dδ+), between P and NADPH – the electron and proton donor (H–D) – accumulates in the following sequence: P* + H–D → (P*•••H–D)→[(P*•••H–D)←(P•••H–D+)] → 1(P•••H–D+)] → 3(P•••H–D+) → (Pδ−•••H–D δ+), where an equilibrium state (ES) – [(P*•••H–D)←(P•••H–D+)] – with a lifetime of about 1 to 2 ns, exists between the local excited (LE) and ET states. The existence of a triplet ET state – 3(P•••H–D+) – is proposed because the time interval between recording of the ES and appearance of the CTC GS (35–250 ns) does not fit the lifetime of the singlet excited complex (exciplex). It is feasible that apart from NADPH, other intermediate proton carriers are contemporaneously involved in the dark reaction (Pδ−•••H–Dδ+) → Chlide, because proton binding to the C7–C8 bond in vivo takes place in the trans-configuration. The hydride ion may approach the C7–C8 bond from one side by heterolytic fission and an additional proton, donated by the protein group, may be simultaneously added to this bond from the opposite side of the porphyrin nucleus surface. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
13.
Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.  相似文献   
14.
The advancement of leaf senescence is accompanied by a reduction in cellular protein content together with the induction of specific proteins which are probably involved in the process. In the present study, with parsley, we followed the changes in the levels of proteins functionally and immunogenically related to pathogenesis‐related proteins during both senescence of detached leaves and natural senescence of attached leaves. Both chitinase activity and protein level were found to be induced during senescence, as was the level of two other proteins immunologically related to β‐1,3‐glucanase and P4 pathogenesis‐related proteins of citrus and tomato, respectively. A high correlation between the advancement of senescence and the induction of these proteins was demonstrated. Treatments with CO2 or gibberellic acid, which retard senescence, reduced both chitinase activity and the level of the pathogenesis‐related proteins, whereas enhancement of senescence with ethylene induced them further. The induction of pathogenesis‐related proteins during senescence suggests that these proteins may have a primary role in this process.  相似文献   
15.
Senescence-induced RNases in tomato   总被引:18,自引:0,他引:18  
  相似文献   
16.
17.
Thiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (∆8) is viable. In this study, we employed two independent ∆8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and ∆8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. ∆8 lines showed a significant increase in nonrecurrent point mutations and indels. The original ∆8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all ∆8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of ∆8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness.  相似文献   
18.
Two major control systems regulate early stages of mitosis: activation of Cdk1 and anaphase control through assembly and disassembly of the mitotic spindle. In parallel to cell cycle progression, centrosomal duplication is regulated through proteins including Nek2. Recent studies suggest that centrosome-localized Chk1 forestalls premature activation of centrosomal Cdc25b and Cdk1 for mitotic entry, whereas Chk2 binds centrosomes and arrests mitosis only after activation by ATM and ATR in response to DNA damage. Here, we show that Chk2 centrosomal binding does not require DNA damage, but varies according to cell cycle progression. These and other data suggest a model in which binding of Chk2 to the centrosome at multiple cell cycle junctures controls co-localization of Chk2 with other cell cycle and centrosomal regulators.Key words: Chk2, centrosome, checkpoint, DNA damage, wild type, kinase-defective  相似文献   
19.
Naider F  Becker JM  Lee YH  Horovitz A 《Biochemistry》2007,46(11):3476-3481
The interaction between the yeast G protein-coupled receptor (GPCR), Ste2p, and its alpha-factor tridecapeptide ligand was subjected to double-mutant cycle scanning analysis by which the pairwise interaction energy of each ligand residue with two receptor residues, N205 and Y266, was determined. The mutations N205A and Y266A were previously shown to result in deficient signaling but cause only a 2.5-fold and 6-fold decrease, respectively, in the affinity for alpha-factor. The analysis shows that residues at the amine terminus of alpha-factor interact strongly with N205 and Y266 whereas residues in the center and at the carboxyl terminus of the peptide interact only weakly if at all with these receptor residues. Multiple-mutant thermodynamic cycle analysis was used to assess whether the energies of selected pairwise interactions between residues of the alpha-factor peptide changed upon binding to Ste2p. Strong positive cooperativity between residues 1 through 4 of alpha-factor was observed during receptor binding. In contrast, no thermodynamic evidence was found for an interaction between a residue near the carboxyl terminus of alpha-factor (position 11) and one at the N-terminus (position 3). The study shows that multiple-mutant cycle analyses of the binding of an alanine-scanned peptide to wild-type and mutant GPCRs can provide detailed information on contributions of inter- and intramolecular interactions to the binding energy and potentially prove useful in developing 3D models of ligand docked to its receptor.  相似文献   
20.
MOTIVATION: Theoretical considerations have indicated that the amount of chaperonin GroEL in Escherichia coli cells is sufficient to fold only approximately 2-5% of newly synthesized proteins under normal physiological conditions, thereby suggesting that only a subset of E.coli proteins fold in vivo in a GroEL-dependent manner. Recently, members of this subset were identified in two independent studies that resulted in two partially overlapping lists of GroEL-interacting proteins. The objective of the work described here was to identify sequence-based features of GroEL-interacting proteins that distinguish them from other E.coli proteins and that may account for their dependence on the chaperonin system. RESULTS: Our analysis shows that GroEL-interacting proteins have, on average, low folding propensities and high translation efficiencies. These two properties in combination can increase the risk of aggregation of these proteins and, thus, cause their folding to be chaperonin-dependent. Strikingly, we find that these properties are absent in proteins homologous to the E.coli GroEL-interacting proteins in Ureaplasma urealyticum, an organism that lacks a chaperonin system, thereby confirming our conclusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号