首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   708篇
  免费   27篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   4篇
  2019年   8篇
  2018年   11篇
  2017年   6篇
  2016年   31篇
  2015年   24篇
  2014年   30篇
  2013年   48篇
  2012年   62篇
  2011年   62篇
  2010年   39篇
  2009年   21篇
  2008年   31篇
  2007年   36篇
  2006年   25篇
  2005年   16篇
  2004年   32篇
  2003年   26篇
  2002年   23篇
  2001年   20篇
  2000年   25篇
  1999年   11篇
  1998年   4篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1992年   14篇
  1991年   9篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   11篇
  1986年   7篇
  1985年   10篇
  1984年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1971年   2篇
  1969年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有735条查询结果,搜索用时 15 毫秒
81.
Two nonoverlapping autosomal inversions defined unusual neo-sex chromosomes in the Hessian fly (Mayetiola destructor). Like other neo-sex chromosomes, these were normally heterozygous, present only in one sex, and suppressed recombination around a sex-determining master switch. Their unusual properties originated from the anomalous Hessian fly sex determination system in which postzygotic chromosome elimination is used to establish the sex-determining karyotypes. This system permitted the evolution of a master switch (Chromosome maintenance, Cm) that acts maternally. All of the offspring of females that carry Cm-associated neo-sex chromosomes attain a female-determining somatic karyotype and develop as females. Thus, the chromosomes act as maternal effect neo-W''s, or W-prime (W′) chromosomes, where ZW′ females mate with ZZ males to engender female-producing (ZW′) and male-producing (ZZ) females in equal numbers. Genetic mapping and physical mapping identified the inversions. Their distribution was determined in nine populations. Experimental matings established the association of the inversions with Cm and measured their recombination suppression. The inversions are the functional equivalent of the sciarid X-prime chromosomes. We speculate that W′ chromosomes exist in a variety of species that produce unisexual broods.SEX chromosomes are usually classified as X, Y, Z, or W on the basis of their pattern of segregation and the gender of the heterogametic sex (Ohno 1967). However, when chromosome-based sex determination occurs postzygotically, the same nomenclature confounds important distinctions and may hide interesting evolutionary phenomena. The Hessian fly (Mayetiola destructor), a gall midge (Diptera: Cecidomyiidae) and an important insect pest of wheat, presents an excellent example (Stuart and Hatchett 1988, 1991). In this insect, all of the female gametes and all of the male gametes have the same number of X chromosomes (Figure 1A); no heterogametic sex exists. Nevertheless, Hessian fly sex determination is chromosome based; postzygotic chromosome elimination produces different X chromosome to autosome ratios in somatic cells (male A1A2X1X2/A1A2OO and female A1A2X1X2/A1A2X1X2, where A1 and A2 are the autosomes, X1 and X2 are the X chromosomes, and the paternally derived chromosomes follow the slash) (Stuart and Hatchett 1991; Marin and Baker 1998). Thus, Hessian fly “X” chromosomes are defined by their haploid condition in males, rather than by their segregation in the gametes.Open in a separate windowFigure 1.—Chromosome behavior and sex determination in the Hessian fly. (A) Syngamy (1) establishes the germ-line chromosome constitution: ∼32 maternally derived E chromosomes (represented as a single white chromosome) and both maternally derived (black) and paternally derived (gray) autosomes and X chromosomes. During embryogenesis, while the E chromosomes are eliminated, the paternally derived X chromosomes are either retained (2) or excluded (3) from the presumptive somatic cells. When the paternally derived X chromosomes are retained (2), a female-determining karyotype is established. When they are eliminated (3), a male-determining karyotype is established. Thelygenic mothers carry Cm (white arrow), which conditions all of their offspring to retain the X chromosomes. Recombination occurs during oogenesis (4). All ova contain a full complement of E chromosomes and a haploid complement of autosomes and X chromosomes. Chromosome elimination occurs during spermatogenesis (5). Sperm contain only the maternally derived autosomes and X chromosomes. (B) The segregation of Cm (white dot) on a Hessian fly autosome among monogenic families. Thelygenic females produce broods composed of equal numbers of thelygenic (Cm/−) and arrhenogenic (−/−) females (box 1). Arrhenogenic females produce males (box 2). (C) Matings between monogenic and amphigenic families. Cm (white dot) is dominant to the amphigenic-derived chromosomes (gray dot) and generates all-female offspring (box 3). Amphigenic-derived chromosomes are dominant to the arrhenogenic-derived chromosomes (no dot) and generate offspring of both sexes (box 4).An autosomal, dominant, genetic factor called Chromosome maintenance (Cm) complicates Hessian fly sex determination further (Stuart and Hatchett 1991). Cm has a maternal effect that acts upstream of X chromosome elimination during embryogenesis (Figure 1A). It prevents X chromosome elimination so that all of the offspring of Cm-bearing mothers obtain a female-determining karyotype. Cm-bearing females produce only female offspring and are therefore thelygenic. The absence of Cm usually has the opposite effect; all of the offspring of most Cm-lacking females obtain a male-determining karyotype. These Cm-lacking females produce only male offspring and are therefore arrhenogenic. Like a sex-determining master switch, Cm is usually heterozygous and present in only one sex (Figure 1B). Thus, thelygenic females (Cm/−) are “heterogametic,” as their Cm-containing gametes and Cm-lacking gametes produce thelygenic (Cm/−) and arrhenogenic (−/−) females in a 1:1 ratio. Collectively, thelygenic and arrhenogenic females are called monogenic because they produce unisexual families. However, some Hessian fly females produce broods of both sexes and are called amphigenic. No mating barrier between monogenic and amphigenic families exists (Figure 1C), but amphigenic females have always been found in lower abundance (Painter 1930; Gallun et al. 1961; Stuart and Hatchett 1991). In experimental matings, the inheritance of maternal phenotype was consistent with the segregation of three Cm alleles (Figure 1C): a dominant thelygenic allele, a hypomorphic amphigenic allele, and a null arrhenogenic allele (Stuart and Hatchett 1991).Here we report the genetic and physical mapping of Cm on Hessian fly autosome 1 (A1). Two nonoverlapping inversions were identified that segregated perfectly with Cm. The most distal inversion was present in all thelygenic females examined. The more proximal inversion extended recombination suppression. These observations suggested that successive inversions evolved to suppress recombination around Cm after it arose. The inversions therefore appear to have evolved in response to the forces that shaped vertebrate Y and W chromosomes (Charlesworth 1996; Graves and Shetty 2001; Rice and Chippindale 2001; Carvalho and Clark 2005). We therefore believe the inversion-bearing chromosomes may be classified as maternal effect neo-W''s.  相似文献   
82.
Acetyl-11-keto-beta-boswellic acid (AKBA), a component of an Ayurvedic therapeutic plant Boswellia serrata, is a pentacyclic terpenoid active against a large number of inflammatory diseases, including cancer, arthritis, chronic colitis, ulcerative colitis, Crohn's disease, and bronchial asthma, but the mechanism is poorly understood. We found that AKBA potentiated the apoptosis induced by TNF and chemotherapeutic agents, suppressed TNF-induced invasion, and inhibited receptor activator of NF-kappaB ligand-induced osteoclastogenesis, all of which are known to require NF-kappaB activation. These observations corresponded with the down-regulation of the expression of NF-kappaB-regulated antiapoptotic, proliferative, and angiogenic gene products. As examined by DNA binding, AKBA suppressed both inducible and constitutive NF-kappaB activation in tumor cells. It also abrogated NF-kappaB activation induced by TNF, IL-1beta, okadaic acid, doxorubicin, LPS, H2O2, PMA, and cigarette smoke. AKBA did not directly affect the binding of NF-kappaB to the DNA but inhibited sequentially the TNF-induced activation of IkappaBalpha kinase (IKK), IkappaBalpha phosphorylation, IkappaBalpha ubiquitination, IkappaBalpha degradation, p65 phosphorylation, and p65 nuclear translocation. AKBA also did not directly modulate IKK activity but suppressed the activation of IKK through inhibition of Akt. Furthermore, AKBA inhibited the NF-kappaB-dependent reporter gene expression activated by TNFR type 1, TNFR-associated death domain protein, TNFR-associated factor 2, NF-kappaB-inducing kinase, and IKK, but not that activated by the p65 subunit of NF-kappaB. Overall, our results indicated that AKBA enhances apoptosis induced by cytokines and chemotherapeutic agents, inhibits invasion, and suppresses osteoclastogenesis through inhibition of NF-kappaB-regulated gene expression.  相似文献   
83.
84.

Background  

Protein sequence alignment is one of the basic tools in bioinformatics. Correct alignments are required for a range of tasks including the derivation of phylogenetic trees and protein structure prediction. Numerous studies have shown that the incorporation of predicted secondary structure information into alignment algorithms improves their performance. Secondary structure predictors have to be trained on a set of somewhat arbitrarily defined states (e.g. helix, strand, coil), and it has been shown that the choice of these states has some effect on alignment quality. However, it is not unlikely that prediction of other structural features also could provide an improvement. In this study we use an unsupervised clustering method, the self-organizing map, to assign sequence profile windows to "structural states" and assess their use in sequence alignment.  相似文献   
85.
86.
Laboratory selection experiments have evidenced storage of energy metabolites in adult flies of desiccation and starvation resistant strains of D. melanogaster but resource acquisition during larval stages has received lesser attention. For wild populations of D. melanogaster, it is not clear whether larvae acquire similar or different energy metabolites for desiccation and starvation resistance. We tested the hypothesis whether larval acquisition of energy metabolites is consistent with divergence of desiccation and starvation resistance in darker and lighter isofemale lines of D. melanogaster. Our results are interesting in several respects. First, we found contrasting patterns of larval resource acquisition, i.e., accumulation of higher carbohydrates during 3rd instar larval stage of darker flies versus higher levels of triglycerides in 1st and 2nd larval instars of lighter flies. Second, 3rd instar larvae of darker flies showed ~40?h longer duration of development at 21°C; and greater accumulation of carbohydrates (trehalose and glycogen) in fed larvae as compared with larvae non-fed after 150?h of egg laying. Third, darker isofemale lines have shown significant increase in total water content (18%); hemolymph (86%) and dehydration tolerance (11%) as compared to lighter isofemale lines. Loss of hemolymph water under desiccation stress until death was significantly higher in darker as compared to lighter isofemale lines but tissue water loss was similar. Fourth, for larvae of darker flies, about 65% energy content is contributed by carbohydrates for conferring greater desiccation resistance while the larvae of lighter flies acquire 2/3 energy from lipids for sustaining starvation resistance; and such energy differences persist in the newly eclosed flies. Thus, larval stages of wild-caught darker and lighter flies have evolved independent physiological processes for the accumulation of energy metabolites to cope with desiccation or starvation stress.  相似文献   
87.
The pharmacological properties of (±)-2-(N-tert-butylamino)-3′-iodo-4′-azidopropiophenone [(±)-SADU-3-72], a photoreactive analog of bupropion (BP), were characterized at different muscle nicotinic acetylcholine receptors (AChRs) by functional and structural approaches. Ca2+ influx results indicate that (±)-SADU-3-72 is 17- and 6-fold more potent than BP in inhibiting human (h) embryonic (hα1β1γδ) and adult (hα1β1εδ) muscle AChRs, respectively. (±)-SADU-3-72 binds with high affinity to the [3H]TCP site within the resting or desensitized Torpedo AChR ion channel, whereas BP has higher affinity for desensitized AChRs. Molecular docking results indicate that both SADU-3-72 enantiomers interact with the valine (position 13′) and serine (position 6′) rings. However, an additional domain, between the outer (position 20′) and valine rings, is observed in Torpedo AChR ion channels. Our results indicate that the azido group of (±)-SADU-3-72 may enhance its interaction with polar groups and the formation of hydrogen bonds at AChRs, thus supporting the observed higher potency and affinity of (±)-SADU-3-72 compared to BP. Collectively our results are consistent with a model where BP/SADU-3-72 and TCP bind to overlapping sites within the lumen of muscle AChR ion channels. Based on these results, we believe that (±)-SADU-3-72 is a promising photoprobe for mapping the BP binding site, especially within the resting AChR ion channel.  相似文献   
88.
3-Formylchromone (3-FC) has been associated with anticancer potential through a mechanism yet to be elucidated. Because of the critical role of NF-κB in tumorigenesis, we investigated the effect of this agent on the NF-κB activation pathway. Whether activated by inflammatory agents (such as TNF-α and endotoxin) or tumor promoters (such as phorbol ester and okadaic acid), 3-FC suppressed NF-κB activation. It also inhibited constitutive NF-κB expressed by most tumor cells. This activity correlated with sequential inhibition of IκBα kinase (IKK) activation, IκBα phosphorylation, IκBα degradation, p65 phosphorylation, p65 nuclear translocation, and reporter gene expression. We found that 3-FC inhibited the direct binding of p65 to DNA, and this binding was reversed by a reducing agent, thus suggesting a role for the cysteine residue. Furthermore, mutation of Cys38 to Ser in p65 abolished this effect of the chromone. This result was confirmed by a docking study. 3-FC also inhibited IKK activation directly, and the reducing agent reversed this inhibition. Furthermore, mutation of Cys179 to Ala in IKK abolished the effect of the chromone. Suppression of NF-κB activation led to inhibition of anti-apoptotic (Bcl-2, Bcl-xL, survivin, and cIAP-1), proliferative (cyclin D1 and COX-2), invasive (MMP-9 and ICAM-1), and angiogenic (VEGF) gene products and sensitization of tumor cells to cytokines. Thus, this study shows that modification of cysteine residues in IKK and p65 by 3-FC leads to inhibition of the NF-κB activation pathway, suppression of anti-apoptotic gene products, and potentiation of apoptosis in tumor cells.  相似文献   
89.
Cardiac rehabilitation (CR) produces a host of health benefits related to modifiable cardiovascular risk factors. The purpose of the present investigation was to determine the influence of body weight, assessed through BMI, on acute and long-term improvements in aerobic capacity following completion of CR. Three thousand nine hundred and ninety seven subjects with coronary artery disease (CAD) participated in a 12-week multidisciplinary CR program. Subjects underwent an exercise test to determine peak estimated metabolic equivalents (eMETs) and BMI assessment at baseline, immediately following CR completion and at 1-year follow-up. Normal weight subjects at 1-year follow-up demonstrated the greatest improvement in aerobic fitness and best retention of those gains (gain in peak METs: 0.95 ± 1.1, P < 0.001). Although the improvement was significant (P < 0.001), subjects who were initially classified as obese had the lowest aerobic capacity and poorest retention in CR fitness gains at 1-year follow-up (gain in peak eMETs: 0.69 ± 1.2). Subjects initially classified as overweight by BMI had a peak eMET improvement that was also significantly better (P < 0.05) than obese subjects at 1-year follow-up (gain in peak eMETs: 0.82 ± 1.1). Significant fitness gains, one of the primary beneficial outcomes of CR, can be obtained by all subjects irrespective of BMI classification. However, obese patients have poorer baseline fitness and are more likely to "give back" fitness gains in the long term. Obese CAD patients may therefore benefit from additional interventions to enhance the positive adaptations facilitated by CR.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号