首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2203篇
  免费   142篇
  国内免费   3篇
  2024年   1篇
  2023年   13篇
  2022年   17篇
  2021年   103篇
  2020年   33篇
  2019年   42篇
  2018年   78篇
  2017年   59篇
  2016年   86篇
  2015年   101篇
  2014年   152篇
  2013年   177篇
  2012年   207篇
  2011年   233篇
  2010年   132篇
  2009年   130篇
  2008年   145篇
  2007年   121篇
  2006年   106篇
  2005年   77篇
  2004年   88篇
  2003年   63篇
  2002年   59篇
  2001年   12篇
  2000年   14篇
  1999年   8篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1983年   5篇
  1982年   1篇
  1981年   2篇
  1979年   7篇
  1978年   4篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1970年   3篇
排序方式: 共有2348条查询结果,搜索用时 15 毫秒
91.
Diabetes affects a large population of the world. Lifestyle, obesity, dietary habits, and genetic factors contribute to this metabolic disease. A target pathway to control diabetes is the 5′-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. AMPK is a heterotrimeric protein with α, β, and γ subunits. In several studies, AMPK activation enhanced glucose uptake into cells and inhibited intracellular glucose production. Impairment of AMPK activity is present in diabetes, according to some studies. Drugs used in the treatment of diabetes, such as metformin, are also known to act through regulation of AMPK. Thus, drugs that activate and regulate AMPK are potential candidates for the treatment of diabetes. In addition, many patients encounter important adverse effects, like hypoglycemia, while using allopathic drugs. As a result, the investigation of plant-derived natural drugs that lack adverse side effects and treat diabetes is necessary. Natural products like berberine, quercetin, resveratrol, and so forth have shown significant potential in regulating and activating the AMPK pathway which can lead to manage diabetes mellitus and its complications.  相似文献   
92.
93.
Chronic inflammation contributes to obesity mediated metabolic disturbances, including insulin resistance. Obesity is associated with altered microbial load in metabolic tissues that can contribute to metabolic inflammation. Different bacterial components such as, LPS, peptidoglycans have been shown to underpin metabolic disturbances through interaction with host innate immune receptors. Activation of Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) with specific peptidoglycan moieties promotes insulin resistance, inflammation and lipolysis in adipocytes. However, it was not clear how Nod1-mediated lipolysis and inflammation is linked. Here, we tested if Nod1-mediated lipolysis caused accumulation of lipid intermediates and promoted cell autonomous inflammation in adipocytes. We showed that Nod1-mediated lipolysis caused accumulation of diacylglycerol (DAG) and activation of PKCδ in 3T3-L1 adipocytes, which was prevented with a Nod1 inhibitor. Nod1-activated PKCδ caused downstream stimulation of IRAK1/4 and was associated with increased expression of proinflammatory cytokines such as, IL-1β, IL-18, IL-6, TNFα and MCP-1. Pharmacological inhibition or siRNA mediated knockdown of IRAK1/4 attenuated Nod1-mediated activation of NF-κB, JNK, and the expression of proinflammatory cytokines. These results reveal that Nod1-mediated lipolysis promoted accumulation of DAG, which engaged PKCδ and IRAK1/4 to augment inflammation in 3T3-L1 adipocytes.  相似文献   
94.
Fiber optic in vivo imaging in the mammalian nervous system   总被引:4,自引:0,他引:4  
The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications.  相似文献   
95.
96.
Amplified Fragment Length Polymorphism (AFLP) screening is a genome-wide genotyping strategy that has been widely used in plants and bacteria, but little has been reported concerning its use in humans. We investigated if the AFLP procedure could be coupled with high-throughput capillary electrophoresis (CE) for use in tumor diagnosis and classification. Using CE-AFLP, a series of molecular 'fingerprints' were generated for a set of gastric tumor and normal genomic DNA samples. The CE-AFLP procedure was qualitatively and quantitatively robust, and a variety of clustering tools were used to identify a specific DNA marker 'pattern' of 20 features that classified the tumor and normal samples to reasonable degrees of accuracy (Sensitivity 95%, Specificity 80%). The CE-AFLP-based approach also correctly classified 16 tumor samples, which in a previous study had exhibited no detectable genomic aberrations by comparative genome hybridization (CGH). This is the first reported application of CE-AFLP screening in tumor diagnosis. As the procedure is relatively inexpensive and requires minimal prior sequence knowledge and biological material, we suggest that CE-AFLP-based protocols may represent a promising new approach for DNA-based cancer screening and diagnosis.  相似文献   
97.

Background

Patients with acute exacerbation of chronic obstructive pulmonary disease (COPD) commonly require hospitalization and admission to intensive care unit (ICU). It is useful to identify patients at the time of admission who are likely to have poor outcome. This study was carried out to define the predictors of mortality in patients with acute exacerbation of COPD and to device a scoring system using the baseline physiological variables for prognosticating these patients.

Methods

Eighty-two patients with acute respiratory failure secondary to COPD admitted to medical ICU over a one-year period were included. Clinical and demographic profile at the time of admission to ICU including APACHE II score and Glasgow coma scale were recorded at the time of admission to ICU. In addition, acid base disorders, renal functions, liver functions and serum albumin, were recorded at the time of presentation. Primary outcome measure was hospital mortality.

Results

Invasive ventilation was required in 69 patients (84.1%). Fifty-two patients survived to hospital discharge (63.4%). APACHE II score at the time of admission to ICU {odds ratio (95 % CI): 1.32 (1.138–1.532); p < 0.001} and serum albumin (done within 24 hours of admission) {odds ratio (95 % CI): 0.114 (0.03-0.432); p = 0.001}. An equation, constructed using the adjusted odds ratio for the two parameters, had an area under the ROC curve of 91.3%. For the choice of cut-off, sensitivity, specificity, positive and negative predictive value for predicting outcome was 90%, 86.5%, 79.4% and 93.7%.

Conclusion

APACHE II score at admission and SA levels with in 24 hrs after admission are independent predictors of mortality for patients with COPD admitted to ICU. The equation derived from these two parameters is useful for predicting outcome of these patients.  相似文献   
98.
Little is known about how hormones interact in the photoperiodic induction of seasonal responses in birds. In this study, two experiments determined if the treatment with melatonin altered inhibitory effects of prolactin on photoperiodic induction of seasonal responses in the Palearctic-Indian migratory male redheaded bunting Emberiza bruniceps. Each experiment employed three groups (N = 6–7 each) of photosensitive birds that were held under 8 hours light: 16 hours darkness (8L:16D) since early March. In the experiment 1, beginning in mid June 2001, birds were exposed to natural day lengths (NDL) at 27 degree North (day length = ca.13.8 h, sunrise to sunset) for 23 days. In the experiment 2, beginning in early April 2002, birds were exposed to 14L:10D for 22 days. Beginning on day 4 of NDL or day 1 of 14L:10D, they received 10 (experiment 1) or 13 (experiment 2) daily injections of both melatonin and prolactin (group 1) or prolactin alone (group 2) at a dose of 20 microgram per bird per day in 200 microliter of vehicle. Controls (group 3) received similar volume of vehicle. Thereafter, birds were left uninjected for the next 10 (experiment 1) or 9 days (experiment 2). All injections except those of melatonin were made at the zeitgeber time 10 (ZT 0 = time of sunrise, experiment 1; time of lights on, experiment 2); melatonin was injected at ZT 9.5 and thus 0.5 h before prolactin. Observations were recorded on changes in body mass, testicular growth and feather regeneration.  相似文献   
99.
Cell movement is characterized by anterior-posterior polarization of multiple cell structures. We show here that the plasma membrane is polarized in moving endothelial cells (EC); in particular, plasma membrane microviscosity (PMM) is increased at the cell leading edge. Our studies indicate that cholesterol has an important role in generation of this microviscosity gradient. In vitro studies using synthetic lipid vesicles show that membrane microviscosity has a substantial and biphasic influence on actin dynamics; a small amount of cholesterol increases actin-mediated vesicle deformation, whereas a large amount completely inhibits deformation. Experiments in migrating ECs confirm the important role of PMM on actin dynamics. Angiogenic growth factor-stimulated cells exhibit substantially increased membrane microviscosity at the cell front but, unexpectedly, show decreased rates of actin polymerization. Our results suggest that increased PMM in lamellipodia may permit more productive actin filament and meshwork formation, resulting in enhanced rates of cell movement.  相似文献   
100.
Several drugs that interact with membrane sterols or inhibit their syntheses are effective in clearing a number of fungal infections. The AIDS-associated lung infection caused by Pneumocystis jirovecii is not cleared by many of these therapies. Pneumocystis normally synthesizes distinct C28 and C29 24-alkylsterols, but ergosterol, the major fungal sterol, is not among them. Two distinct sterol compositional phenotypes were previously observed in P. jirovecii. One was characterized by delta7 C28 and C29 24-alkylsterols with only low proportions of higher molecular mass components. In contrast, the other type was dominated by high C31 and C32 24-alkylsterols, especially pneumocysterol. In the present study, 28 molecular species were elucidated by nuclear magnetic resonance analysis of a human lung specimen containing P. jirovecii representing the latter sterol profile phenotype. Fifteen of the 28 had the methyl group at C-14 of the sterol nucleus and these represented 96% of the total sterol mass in the specimen (excluding cholesterol). These results strongly suggest that sterol 14alpha-demethylase was blocked in these organisms. Twenty-four of the 28 were 24-alkylsterols, indicating that methylation of the C-24 position of the sterol side chain by S-adenosyl-L-methionine:sterol C-24 methyl transferase was fully functional.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号