首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   136篇
  国内免费   3篇
  2024年   1篇
  2023年   13篇
  2022年   15篇
  2021年   100篇
  2020年   32篇
  2019年   42篇
  2018年   78篇
  2017年   53篇
  2016年   83篇
  2015年   98篇
  2014年   147篇
  2013年   174篇
  2012年   203篇
  2011年   233篇
  2010年   131篇
  2009年   127篇
  2008年   140篇
  2007年   116篇
  2006年   106篇
  2005年   75篇
  2004年   84篇
  2003年   58篇
  2002年   57篇
  2001年   15篇
  2000年   13篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1979年   4篇
  1978年   4篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1970年   2篇
排序方式: 共有2283条查询结果,搜索用时 109 毫秒
61.
62.
Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations.  相似文献   
63.

Introduction

In this study, 27 genetic polymorphisms that were previously reported to be associated with clinical outcomes in colorectal cancer patients were investigated in relation to overall survival (OS) and disease free survival (DFS) in colorectal cancer patients from Newfoundland.

Methods

The discovery and validation cohorts comprised of 532 and 252 patients, respectively. Genotypes of 27 polymorphisms were first obtained in the discovery cohort and survival analyses were performed assuming the co-dominant genetic model. Polymorphisms associated with disease outcomes in the discovery cohort were then investigated in the validation cohort.

Results

When adjusted for sex, age, tumor stage and microsatellite instability (MSI) status, four polymorphisms were independent predictors of OS in the discovery cohort MTHFR Glu429Ala (HR: 1.72, 95%CI: 1.04–2.84, p = 0.036), ERCC5 His46His (HR: 1.78, 95%CI: 1.15–2.76, p = 0.01), SERPINE1 −675indelG (HR: 0.52, 95%CI: 0.32–0.84, p = 0.008), and the homozygous deletion of GSTM1 gene (HR: 1.4, 95%CI: 1.03–1.92, p = 0.033). In the validation cohort, the MTHFR Glu429Ala polymorphism was associated with shorter OS (HR: 1.71, 95%CI: 1.18–2.49, p = 0.005), although with a different genotype than the discovery cohort (CC genotype in the discovery cohort and AC genotype in the validation cohort). When stratified based on treatment with 5-Fluorouracil (5-FU)-based regimens, this polymorphism was associated with reduced OS only in patients not treated with 5-FU. In the DFS analysis, when adjusted for other variables, the TT genotype of the ERCC5 His46His polymorphism was associated with shorter DFS in both cohorts (discovery cohort: HR: 1.54, 95%CI: 1.04–2.29, p = 0.032 and replication cohort: HR: 1.81, 95%CI: 1.11–2.94, p = 0.018).

Conclusions

In this study, associations of the MTHFR Glu429Ala polymorphism with OS and the ERCC5 His46His polymorphism with DFS were identified in two colorectal cancer patient cohorts. Our results also suggest that the MTHFR Glu429Ala polymorphism may be an adverse prognostic marker in patients not treated with 5-FU.  相似文献   
64.
65.
Children’s daycare centers appear to be hubs of respiratory infectious disease transmission, yet there is only limited information about the airborne microbial communities that are present in daycare centers. We have investigated the microbial community of the air in a daycare center, including seasonal dynamics in the bacterial community and the presence of specific viral pathogens. We collected filters from the heating, ventilation, and air conditioning (HVAC) system of a daycare center every two weeks over the course of a year. Amplifying and sequencing the 16S rRNA gene revealed that the air was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes that are commonly associated with the human skin flora. Clear seasonal differences in the microbial community were not evident; however, the community structure differed when the daycare center was closed and unoccupied for a 13-day period. These results suggest that human occupancy, rather than the environment, is the major driver in shaping the microbial community structure in the air of the daycare center. Using PCR for targeted viruses, we detected a seasonal pattern in the presence of respiratory syncytial virus that included the period of typical occurrence of the disease related to the virus; however, we did not detect the presence of adenovirus or rotavirus at any time.  相似文献   
66.
67.

Introduction

Root-mediated changes in soil organic matter (SOM) decomposition, termed rhizosphere priming effects (RPE), play crucial roles in the global carbon (C) cycle, but their mechanisms and field relevance remain ambiguous. We hypothesize that nitrogen (N) shortages may intensify SOM decomposition in the rhizosphere because of increase of fine roots and rhizodeposition.

Methods

RPE and their dependence on N-fertilization were studied using a C3-to-C4 vegetation change. N-fertilized and unfertilized soil cores, with and without maize, were incubated in the field for 50 days. Soil CO2 efflux was measured, partitioned for SOM- and root-derived CO2, and RPE was calculated. Plant biomass, microbial biomass C (MBC) and N (MBN), and enzyme activities (β-1,4-glucosidase; N-acetylglucosaminidase; L-leucine aminopeptidase) were analyzed.

Results

Roots enhanced SOM mineralization by 35 % and 126 % with and without N, respectively. This was accompanied by higher specific root-derived CO2 in unfertilized soils. MBC, MBN and enzyme activities increased in planted soils, indicating microbial activation, causing positive RPE. N-fertilization had minor effects on MBC and MBN, but it reduced β-1,4-glucosidase and L-leucine aminopeptidase activities under maize through lower root-exudation. In contrast, N-acetylglucosaminidase activity increased with N-fertilization in planted and unplanted soils.

Conclusions

This study showed the field relevance of RPE and confirmed that, despite higher root biomass, N availability reduces RPE by lowering root and microbial activity.
  相似文献   
68.
69.
70.
Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号