首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   12篇
  2021年   4篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   7篇
  2013年   6篇
  2012年   10篇
  2011年   5篇
  2010年   9篇
  2009年   8篇
  2008年   6篇
  2007年   11篇
  2006年   8篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1977年   1篇
  1974年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
71.
Nod1 is an intracellular pattern recognition molecule activated following bacterial infection, which senses a specific muropeptide (l-Ala-d-Glu-meso-DAP (diaminopimelic acid); "Tri(DAP)") from peptidoglycan. Here we investigated the molecular basis of Tri(DAP) sensing by human (h) Nod1. Our results identified the domain responsible for Tri(DAP) detection in the center of the concave surface of hNod1 leucine-rich repeat domain. Amino acid residues critical for sensing define a contiguous surface patch that is largely conserved in Nod1 proteins from different species. Accordingly, the distinct specificities of human versus murine Nod1 toward muropeptide detection were also found to lie in this central cleft. Several splicing variants of Nod1 lacking repeats 7-9 have been characterized recently, the relative balance of which is thought to correlate with the onset of asthma or inflammatory bowel disease. We demonstrated that these isoforms failed to transduce NF-kappaB activation upon muropeptide stimulation. This study provided insights into the molecular mechanisms responsible for the detection of bacterial peptidoglycan by Nod1 and suggested that defects in Nod1-dependent peptidoglycan sensing may contribute to elicit certain inflammatory disorders.  相似文献   
72.
Genes for functional Ser/Thr protein kinases (STPKs) are ubiquitous in prokaryotic genomes, but little is known about their physiological substrates and their actual involvement in bacterial signal transduction pathways. We report here the identification of GarA (Rv1827), a Forkhead-associated (FHA) domain-containing protein, as a putative physiological substrate of PknB, an essential Ser/Thr protein kinase from Mycobacterium tuberculosis. Using a global proteomic approach, GarA was found to be the best detectable substrate of the PknB catalytic domain in non-denatured whole-cell protein extracts from M. tuberculosis and the saprophyte Mycobacterium smegmatis. Enzymological and binding studies of the recombinant proteins demonstrate that docking interactions between the activation loop of PknB and the C-terminal FHA domain of GarA are required to enable efficient phosphorylation at a single N-terminal threonine residue, Thr22, of the substrate. The predicted amino acid sequence of the garA gene, including both the N-terminal phosphorylation motif and the FHA domain, is strongly conserved in mycobacteria and other related actinomycetes, suggesting a functional role of GarA in putative STPK-mediated signal transduction pathways. The ensuing model of PknB-GarA interactions suggests a substrate recruitment mechanism that might apply to other mycobacterial kinases bearing multiple phosphorylation sites in their activation loops.  相似文献   
73.
Trypanosoma cruzi, the agent of Chagas disease, expresses a modified sialidase, the trans-sialidase, which transfers sialic acid from host glycoconjugates to beta-galactose present in parasite mucins. Another American trypanosome, Trypanosoma rangeli, expresses a homologous protein that has sialidase activity but is devoid of transglycosidase activity. Based on the recently determined structures of T.rangeli sialidase (TrSA) and T.cruzi trans-sialidase (TcTS), we have now constructed mutants of TrSA with the aim of studying the relevant residues in transfer activity. Five mutations, Met96-Val, Ala98-Pro, Ser120-Tyr, Gly249-Tyr and Gln284-Pro, were enough to obtain a sialidase mutant (TrSA(5mut)) with trans-sialidase activity; and a sixth mutation increased the activity to about 10% that of wild-type TcTS. The crystal structure of TrSA(5mut) revealed the formation of a trans-sialidase-like binding site for the acceptor galactose, primarily defined by the phenol group of Tyr120 and the indole ring of Trp313, which adopts a new conformation, similar to that in TcTS, induced by the Gln284-Pro mutation. The transition state analogue 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA), which inhibits sialidases but is a poor inhibitor of trans-sialidase, was used to probe the active site conformation of mutant enzymes. The results show that the presence of a sugar acceptor binding-site, the fine-tuning of protein-substrate interactions and the flexibility of crucial active site residues are all important to achieve transglycosidase activity from the TrSA sialidase scaffold.  相似文献   
74.
75.
Yeast peroxisomal catalase A, obtained at high yields by over expression of the C-terminally modified gene from a 2 mu-plasmid, has been crystallized in a form suitable for high resolution X-ray diffraction studies. Brownish crystals with bipyrimidal morphology and reaching ca. 0.8 mm in size were produced by the hanging drop method using ammonium sulphate as precipitant. These crystals diffract better than 2.0 A resolution and belong to the hexagonal space group P6(1)22 with unit cell parameters a = b = 184.3 A and c = 305.5 A. An X-ray data set with 76% completeness at 3.2 A resolution was collected in a rotating anode generator using mirrors to improve the collimation of the beam. An initial solution was obtained by molecular replacement only when using a beef liver catalase tetramer model in which fragments with no sequence homology had been omitted, about 150 residues per subunit. In the structure found a single molecule of catalase A (a tetramer with accurate 222 molecular symmetry) is located in the asymmetric unit of the crystal with an estimated solvent content of about 61%. The preliminary analysis of the structure confirms the absence of a carboxy terminal domain as the one found in the catalase from Penicillium vitalae, the only other fungal catalase structure available. The NADPH binding site appears to be involved in crystal contacts, suggesting that heterogeneity in the occupancy of the nucleotide can be a major difficulty during crystallization.  相似文献   
76.

Introduction  

Cardiovascular disease (CVD) is the leading cause of death in patients with inflammatory polyarthritis (IP), especially in seropositive disease. In established rheumatoid arthritis (RA), insulin resistance (IR) is increased and associated with CVD. We investigated factors associated with IR in an inception cohort of patients with early IP.  相似文献   
77.
In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states.  相似文献   
78.
The exponential increase in genome sequencing output has led to the accumulation of thousands of predicted genes lacking a proper functional annotation. Among this mass of hypothetical proteins, enzymes catalyzing new reactions or using novel ways to catalyze already known reactions might still wait to be identified. Here, we provide a structural and biochemical characterization of the 3-keto-5-aminohexanoate cleavage enzyme (Kce), an enzymatic activity long known as being involved in the anaerobic fermentation of lysine but whose catalytic mechanism has remained elusive so far. Although the enzyme shows the ubiquitous triose phosphate isomerase (TIM) barrel fold and a Zn(2+) cation reminiscent of metal-dependent class II aldolases, our results based on a combination of x-ray snapshots and molecular modeling point to an unprecedented mechanism that proceeds through deprotonation of the 3-keto-5-aminohexanoate substrate, nucleophilic addition onto an incoming acetyl-CoA, intramolecular transfer of the CoA moiety, and final retro-Claisen reaction leading to acetoacetate and 3-aminobutyryl-CoA. This model also accounts for earlier observations showing the origin of carbon atoms in the products, as well as the absence of detection of any covalent acyl-enzyme intermediate. Kce is the first representative of a large family of prokaryotic hypothetical proteins, currently annotated as the "domain of unknown function" DUF849.  相似文献   
79.
Trans-sialidases are surface-located proteins in Trypanosoma cruzi that participate in key parasite-host interactions and parasite virulence. These proteins are encoded by a large multigenic family, with tandem-repeated and individual genes dispersed throughout the genome. While a large number of genes encode for catalytically active enzyme isoforms, many others display mutations that involve catalytic residues. The latter ultimately code for catalytically inactive proteins with very high similarity to their active paralogs. These inactive members have been shown to be lectins, able to bind sialic acid and galactose in vitro, although their cellular functions are yet to be fully established. We now report structural and biochemical evidence extending the current molecular understanding of these lectins. We have solved the crystal structure of one such catalytically inactive trans-sialidase-like protein, after soaking with a specific carbohydrate ligand, sialyl-α2,3-lactose. Instead of the expected trisaccharide, the binding pocket was observed occupied by α-lactose, strongly suggesting that the protein retains residual hydrolytic activity. This hypothesis was validated by enzyme kinetics assays, in comparison to fully active wild-type trans-sialidase. Surface plasmon resonance also confirmed that these trans-sialidase-like lectins are not only able to bind small oligosaccharides, but also sialylated glycoproteins, which is relevant in the physiologic scenario of parasite infection. Inactive trans-sialidase proteins appear thus to be β-methyl-galactosyl-specific lectins, evolved within an exo-sialidase scaffold, thus explaining why their lectin activity is triggered by the presence of terminal sialic acid.  相似文献   
80.
Efforts to differentiate bovine spongiform encephalopathy (BSE) from scrapie in prion infected sheep have resulted in effective methods to decide about the absence of BSE. In rare instances uncertainties remain due to assumptions that BSE, classical scrapie and CH1641–a rare scrapie variant–could occur as mixtures. In field samples including those from fallen stock, triplex Western blotting analyses of variations in the molecular properties of the proteinase K resistant part of the disease‑associated form of prion protein (PrPres) represents a powerful tool for quick discrimination purposes. In this study we examined 7 deviant ovine field cases of scrapie for some typical molecular aspects of PrPres found in CH1641‑scrapie, classical scrapie and BSE. One case was most close to scrapie with respect to molecular mass of its non-glycosylated fraction and N-terminally located 12B2‑epitope content. Two cases were unlike classical scrapie but too weak to differentiate between BSE or CH1641. The other 4 cases appeared intermediate between scrapie and CH1641 with a reduced molecular mass and 12B2‑epitope content, together with the characteristic presence of a second PrPres population. The existence of these 2 PrPres populations was further confirmed through deglycosylation by PNGaseF. The findings indicate that discriminatory diagnosis between classical scrapie, CH1641 and BSE can remain inconclusive with current biochemical methods. Whether such intermediate cases represent mixtures of TSE strains should be further investigated e.g. in bioassays with rodent lines that are varying in their susceptibility or other techniques suitable for strain typing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号