首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5700篇
  免费   476篇
  2023年   50篇
  2022年   23篇
  2021年   228篇
  2020年   97篇
  2019年   144篇
  2018年   165篇
  2017年   152篇
  2016年   238篇
  2015年   409篇
  2014年   441篇
  2013年   456篇
  2012年   599篇
  2011年   567篇
  2010年   328篇
  2009年   242篇
  2008年   348篇
  2007年   335篇
  2006年   278篇
  2005年   229篇
  2004年   178篇
  2003年   188篇
  2002年   171篇
  2001年   26篇
  2000年   17篇
  1999年   28篇
  1998年   23篇
  1997年   25篇
  1996年   10篇
  1995年   13篇
  1994年   13篇
  1993年   12篇
  1992年   16篇
  1991年   12篇
  1990年   11篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1984年   4篇
  1982年   8篇
  1981年   4篇
  1980年   8篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1973年   6篇
  1972年   4篇
  1969年   4篇
  1967年   5篇
  1966年   3篇
排序方式: 共有6176条查询结果,搜索用时 15 毫秒
31.
Oxalate decarboxylase from Bacillus subtilis is a binuclear Mn-dependent acid stress response enzyme that converts the mono-anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π-stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long-range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5-hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5-hydroxytryptophan with its hydroxyl proton removed. 5-Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N-terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long-range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5-hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins.  相似文献   
32.
An efficient monitoring and control strategy is the basis for a reliable production process. Conventional optical density (OD) measurements involve superpositions of light absorption and scattering, and the results are only given in arbitrary units. In contrast, photon density wave (PDW) spectroscopy is a dilution-free method that allows independent quantification of both effects with defined units. For the first time, PDW spectroscopy was evaluated as a novel optical process analytical technology tool for real-time monitoring of biomass formation in Escherichia coli high-cell-density fed-batch cultivations. Inline PDW measurements were compared to a commercially available inline turbidity probe and with offline measurements of OD and cell dry weight (CDW). An accurate correlation of the reduced PDW scattering coefficient µs′ with CDW was observed in the range of 5–69 g L−1 (R2 = 0.98). The growth rates calculated based on µs′ were comparable to the rates determined with all reference methods. Furthermore, quantification of the reduced PDW scattering coefficient µs′ as a function of the absorption coefficient µa allowed direct detection of unintended process trends caused by overfeeding and subsequent acetate accumulation. Inline PDW spectroscopy can contribute to more robust bioprocess monitoring and consequently improved process performance.  相似文献   
33.
Nucleoside phosphorylases are important biocatalysts for the chemo-enzymatic synthesis of nucleosides and their analogs which are, among others, used for the treatment of viral infections or cancer. S-methyl-5′-thioadenosine phosphorylases (MTAP) are a group of nucleoside phosphorylases and the thermostable MTAP of Aeropyrum pernix (ApMTAP) was described to accept a wide range of modified nucleosides as substrates. Therefore, it is an interesting biocatalyst for the synthesis of nucleoside analogs for industrial and therapeutic applications. To date, thermostable nucleoside phosphorylases were produced in shake flask cultivations using complex media. The drawback of this approach is low volumetric protein yields which hamper the wide-spread application of the thermostable nucleoside phosphorylases in large scale. High cell density (HCD) cultivations allow the production of recombinant proteins with high volumetric yields, as final optical densities >100 can be achieved. Therefore, in this study, we developed a suitable protocol for HCD cultivations of ApMTAP. Initially, optimum expression conditions were determined in 24-well plates using a fed-batch medium. Subsequently, HCD cultivations were performed using E. coli BL21-Gold cells, by employing a glucose-limited fed-batch strategy. Comparing different growth rates in stirred-tank bioreactors, cultivations revealed that growth at maximum growth rates until induction resulted in the highest yields of ApMTAP. On a 500-mL scale, final cell dry weights of 87.1–90.1 g L−1 were observed together with an overproduction of ApMTAP in a 1.9%–3.8% ratio of total protein. Compared to initially applied shake flask cultivations with terrific broth (TB) medium the volumetric yield increased by a factor of 136. After the purification of ApMTAP via heat treatment and affinity chromatography, a purity of more than 90% was determined. Activity testing revealed specific activities in the range of 0.21 ± 0.11 (low growth rate) to 3.99 ± 1.02 U mg−1 (growth at maximum growth rate). Hence, growth at maximum growth rate led to both an increased expression of the target protein and an increased specific enzyme activity. This study paves the way towards the application of thermostable nucleoside phosphorylases in industrial applications due to an improved heterologous expression in Escherichia coli.  相似文献   
34.
Understanding what drives changes in tree mortality as well as the covariates influencing trees' response is a research priority to predict forest responses to global change. Here, we combined drone photogrammetry and ground-based data to assess the influence of crown exposure to light (relative to total crown area), growth deviations (relative to conspecifics), tree size, and species' wood density (as a surrogate for light-demanding and shade-tolerant life-history strategies) on the mortality of 984 canopy trees in an Amazon terra firme forest. Trees with lower wood density were less prone to die when their proportion of crown was more exposed to sunlight, but this relationship with relative crown exposure weakened and slightly reversed as wood density increased. Trees growing less than their species average had higher mortality, especially when the species' wood density decreased. The role of wood density in determining the survival of canopy trees under varying light conditions indicates differential responses of light-demanding versus shade-tolerant species. Our results highlight the importance of accounting for life-history strategies, via plant functional types, in vegetation dynamic models aiming to predict forest demography under a rapidly changing climate. Abstract in Spanish is available with online material.  相似文献   
35.
Here, we investigate Mid- to Late-Holocene vegetation changes in low-lying coastal areas in Tonga and how changing sea levels and recurrent volcanic eruptions have influenced vegetation dynamics on four islands of the Tongan archipelago (South Pacific). To investigate past vegetation and environmental change at Ngofe Marsh (‘Uta Vava’u), we examined palynomorphs (pollen and spores), charcoal (fire), and sediment characteristics (volcanic activity) from a 6.7-m-long sediment core. Radiocarbon dating indicated the sediments were deposited over the last 7700 years. We integrated the Ngofe Marsh data with similar previously published data from Avai’o’vuna Swamp on Pangaimotu Island, Lotofoa Swamp on Foa Island, and Finemui Swamp on Ha’afeva Island. Plant taxa were categorized as littoral, mangrove, rainforest, successional/ disturbance, and wetland groups, and linear models were used to examine relationships between vegetation, relative sea level change, and volcanic eruptions (tephra). We found that relative sea level change has impacted vegetation on three of the four islands investigated. Volcanic eruptions were not identified as a driver of vegetation change. Rainforest decline does not appear to be driven by sea level changes or volcanic eruptions. From all sites analyzed, vegetation at Finemui Swamp was most sensitive to changes in relative sea level. While vegetation on low-lying Pacific islands is sensitive to changing sea levels, island characteristics, such as area and elevation, are also likely to be important factors that mediate specific island responses to drivers of change.  相似文献   
36.
A Monte Carlo algorithm that searches for the optimal docking configuration of hen egg white lysozyme to an antibody is developed. Both the lysozyme and the antibody are kept rigid. Unlike the work of other authors, our algorithm does not attempt to explicitly maximize surface contact, but minimizes the energy computed using coarse-grained pair potentials. The final refinement of our best solutions using all-atom OPLS potentials (Jorgensen and Tirado-Rives8) consistently yields the native conformation as the preferred solution for three different antibodies. We find that the use of an exponential distance-dependent dielectric function is an improvement over the more commonly used linear form. © 1993 Wiley-Liss, Inc.  相似文献   
37.
38.
39.
40.
Thermal inactivation of nonproteolytic Clostridium botulinum type E spores was investigated in rainbow trout and whitefish media at 75 to 93°C. Lysozyme was applied in the recovery of spores, yielding biphasic thermal destruction curves. Approximately 0.1% of the spores were permeable to lysozyme, showing an increased measured heat resistance. Decimal reduction times for the heat-resistant spore fraction in rainbow trout medium were 255, 98, and 4.2 min at 75, 85, and 93°C, respectively, and those in whitefish medium were 55 and 7.1 min at 81 and 90°C, respectively. The z values were 10.4°C in trout medium and 10.1°C in whitefish medium. Commercial hot-smoking processes employed in five Finnish fish-smoking companies provided reduction in the numbers of spores of nonproteolytic C. botulinum of less than 103. An inoculated-pack study revealed that a time-temperature combination of 42 min at 85°C (fish surface temperature) with >70% relative humidity (RH) prevented growth from 106 spores in vacuum-packaged hot-smoked rainbow trout fillets and whole whitefish stored for 5 weeks at 8°C. In Finland it is recommended that hot-smoked fish be stored at or below 3°C, further extending product safety. However, heating whitefish for 44 min at 85°C with 10% RH resulted in growth and toxicity in 5 weeks at 8°C. Moist heat thus enhanced spore thermal inactivation and is essential to an effective process. The sensory qualities of safely processed and more lightly processed whitefish were similar, while differences between the sensory qualities of safely processed and lightly processes rainbow trout were observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号