首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1476篇
  免费   79篇
  2024年   1篇
  2023年   10篇
  2022年   14篇
  2021年   42篇
  2020年   28篇
  2019年   39篇
  2018年   39篇
  2017年   43篇
  2016年   65篇
  2015年   78篇
  2014年   87篇
  2013年   123篇
  2012年   169篇
  2011年   129篇
  2010年   76篇
  2009年   83篇
  2008年   92篇
  2007年   72篇
  2006年   63篇
  2005年   57篇
  2004年   51篇
  2003年   42篇
  2002年   41篇
  2001年   14篇
  2000年   9篇
  1999年   11篇
  1998年   11篇
  1997年   8篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1960年   1篇
排序方式: 共有1555条查询结果,搜索用时 265 毫秒
21.
Green capping is one of the popular methods to re-vegetate abandoned ash ponds of coal based thermal power plants thereby lowering the risk of contamination to the surrounding environment. It has innumerable advantages such as prevention of dust emission, checking soil erosion, stabilizing the surface areas of ash, preventing potential ground water contamination, and finally, adding native vegetation cover, which is very vital in the long term. During the early nineties and later, various reclamation projects were carried out on fly ash dumps, but until date, there have not been any initiatives to assess the alterations in physicochemical and biological properties of fly ash resulting from implementation of these reclamation projects. In the present study, three abandoned ash ponds, located in India, that were reclaimed during 1998–2003 are investigated. Marked alterations in nutritional status, microbial population, and microbial activities have been observed in reclaimed ash ponds.  相似文献   
22.
23.
In order to understand the molecular basis of high nitrogen use efficiency of finger millet, five genes (EcHNRT2, EcLNRT1, EcNADH-NR, EcGS, and EcFd-GOGAT) involved in nitrate uptake and assimilation were isolated using conserved primer approaches. Expression profiles of these five genes along with the previously isolated EcDof1 was studied under increased KNO3 concentrations (0.15 to 1,500 μM) for 2 h as well as at 1.5 μM for 24 h in the roots and shoots of 25 days old nitrogen deprived two contrasting finger millet genotypes (GE-3885 and GE-1437) differing in grain protein content (13.76 and 6.15 %, respectively). Time kinetics experiment revealed that, all the five genes except EcHNRT2 in the leaves of GE-3885 were induced within 30 min of nitrate exposure indicating that there might be a greater nitrogen deficit in leaves and therefore quick transportation of nitrate signals to the leaves. Exposing the plants to increasing nitrate concentrations for 2 h showed that in roots of GE-3885, NR was strongly induced while GS was repressed; however, the pattern was found to be reversed in leaves of GE-1437 indicating that in GE-3885, most of the nitrate might be reduced in the roots but assimilated in leaves and vice-versa. Furthermore, compared with the low-protein genotype, expression of HNRT2 was strongly induced in both roots and shoots of high-protein genotype at the least nitrate concentration supplied. This further indicates that GE-3885 is a quick sensor of nitrogen compared with the low-protein genotype. Furthermore, expression of EcDof1 was also found to overlap the expression of NR, GS, and GOGAT indicating that Dof1 probably regulates the expression of these genes under different conditions by sensing the nitrogen fluctuations around the root zone.  相似文献   
24.
Catharanthus roseus is an important source of pharmaceutically important Monoterpenoid Indole Alkaloids (MIAs). Accumulation of many of the MIAs is induced in response to abiotic stresses such as wound, ultra violet (UV) irradiations, etc. Recently, we have demonstrated a possible role of CrMPK3, a C. roseus mitogen-activated protein kinase in stress-induced accumulation of a few MIAs. Here, we extend our findings using Saccharomyces cerevisiae to investigate the role of CrMPK3 in giving tolerance to abiotic stresses. Yeast cells transformed with CrMPK3 was found to show enhanced tolerance to UV and heat stress. Comparison of CrMPK3 and SLT2, a MAPK from yeast shows high-sequence identity particularly at conserved domains. Additionally, heat stress is also shown to activate a 43 kDa MAP kinase, possibly CrMPK3 in C. roseus leaves. These findings indicate the role of CrMPK3 in stress-induced MIA accumulation as well as in stress tolerance.  相似文献   
25.
Drought is the major environmental stress that limits rice productivity worldwide. In vitro somaclonal variation using different selection agents has been used for crop improvement. Here, rice plants of cv PR113 were selected in vitro on 30, 50 and 70 g L-1 polyethylene glycol 6,000 (PEG). Callus growth, proliferation, calli volume (first and second culture) and plantlet regeneration (third culture) were found to be decreased upto a certain level to acquire tolerance to PEG-induced drought. From the field data, 30 g L-1 PEG lines showed higher vegetative growth (plant height, tiller number, leaf number, shoot weight and root growth) as compared with 50 g L-1 PEG selected somaclone lines under limited irrigation. The yield parameters-panicle length, panicle weight, grains per panicle, 1,000-grain weight, grain yield per plant, harvest index and grain straw ratio were also higher in 30 g L-1 PEG lines as compared with 50 g L-1 PEG lines. The results, therefore indicate that 30 g L-1 PEG selected somaclone lines were more suited than 50 g L-1 PEG selected somaclone lines under stress as compared with WT. The finding suggests that rice cv PR113 somaclones generated on PEG are found to be drought tolerant under field condition with better yield.  相似文献   
26.
Malformation is arguably the most crucial disease of mango (Mangifera indica L.) at present. It is receiving great attention not only because of its widespread and destructive nature but also because of its etiology and control is not absolutely understood. Recently, Fusarium mangiferae is found to be associated with mango malformation disease. There are indications that stress ethylene production could be involved in the disease. Here we have shown the first direct evidence of production of ethylene in pure culture of F. mangiferae obtained from mango. The study also revealed that all the isolates dissected from mango acquire morphological features of F. mangiferae showing most similarity to the features of species with accepted standard features. The isolates of F. mangiferae from mango were observed to produce ethylene in significant amounts, ranging from 9.28–13.66 n mol/g dry wt/day. The findings presented here suggest that F. mangiferae could contribute to the malformation of mango by producing ethylene and probably stimulating stress ethylene production in malformed tissue of mango. Ethylene might be produced through 2-oxoglutarate-dependent oxygenase-type ethylene-forming-enzyme (EFE) pathway in Fusarium sp, which needs to be investigated.  相似文献   
27.
Molecular Biology Reports - Promoter methylation mediated silencing of tumor suppressor genes plays an important role in the tumorigenesis of colorectal carcinoma (CRC). Tumor suppressor gene,...  相似文献   
28.
Kumar  Alok  Kalita  J.  Sinha  Rohit A.  Singh  Gajendra  B  Anjum  Shukla  Mukti  Tiwari  Swasti  Dhole  T. N.  Misra  U. K. 《Neurochemical research》2020,45(9):2184-2195
Neurochemical Research - Role of autophagy in Japanese encephalitis viral (JEV) infection is not well known. In the present study, we reported the role of autophagy flux in microglia activation,...  相似文献   
29.
Abstract

Pierisin-5 is a DNA dependent ADP ribosyltransferase (ADRT) protein from the larvae of Indian cabbage white butterfly, Pieris canidia. Interestingly, Pierisin-5 ADP-ribosylates the DNA as a substrate, but not the protein and subsequently persuades apoptotic cell death in human cancer cells. This has led to the investigation on the DNA binding activity of Pierisin-5 using in vitro and in silico approaches in the present study. However, both the structure and the mechanism of ADP-ribosylation of pierisin-5 are unknown. In silico modeled structure of the N-terminal ADRT catalytic domain interacted with the minor groove of B-DNA for ribosylation with the help of β-NAD+ which lead to a structural modification in DNA (DNA adduct). The possible interaction between calf thymus DNA (CT-DNA) and purified pierisin-5 protein was studied through spectral–spatial studies and the blue shift and hyperchromism in the UV–Visible spectra was observed. The DNA adduct property of pierisin-5 protein was validated by in vitro cytotoxic assay on human gastric (AGS) cancer cell lines. Our study is the first report of the mechanism of DNA binding property of pierisin-5 protein which leads to the induction of cytotoxicity and apoptotic cell death against cancer cell lines.

Communicated by Ramaswamy H. Sarma  相似文献   
30.
Hsp16.3, a molecular chaperone, plays a vital role in the growth and survival of Mycobacterium tuberculosis inside the host. We previously reported that deletion of three amino acid residues (142STN144) from C-terminal extension (CTE) of Hsp16.3 triggers its structural perturbation and increases its chaperone activity, which reaches its apex upon the deletion of its entire CTE (141RSTN144). Thus, we hypothesized that Arg141 (R141) and Ser142 (S142) in the CTE of Hsp16.3 possibly hold the key in maintaining its native-like structure and chaperone activity. To test this hypothesis, we generated two deletion mutants in which R141 and S142 were deleted individually (Hsp16.3ΔR141 and Hsp16.3ΔS142) and three substitution mutants in which R141 was replaced by lysine (Hsp16.3R141K), alanine (Hsp16.3R141A), and glutamic acid (Hsp16.3R141E), respectively. Hsp16.3ΔS142 or Hsp16.3R141K mutant has native-like structure and chaperone activity. Deletion of R141 from the CTE (Hsp16.3ΔR141) perturbs the secondary and tertiary structure, lowers the subunit exchange dynamics and decreases the chaperone activity of Hsp16.3. But, the substitution of R141 with alanine (Hsp16.3R141A) or glutamic acid (Hsp16.3R141E) perturbs its secondary and tertiary structure. Surprisingly, such charge tampering of R141 enhances the subunit exchange dynamics and chaperone activity of Hsp16.3. Interestingly, neither the deletion of R141/S142 nor the substitution of R141 with lysine, alanine and glutamic acid affects the oligomeric mass/size of Hsp16.3. Overall, our study suggests that R141 (especially the positive charge on R141) plays a crucial role in maintaining the native-like structure as well as in regulating subunit exchange dynamics and chaperone activity of Hsp16.3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号