首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3221篇
  免费   359篇
  国内免费   1篇
  2023年   28篇
  2022年   15篇
  2021年   93篇
  2020年   53篇
  2019年   60篇
  2018年   78篇
  2017年   57篇
  2016年   92篇
  2015年   156篇
  2014年   169篇
  2013年   188篇
  2012年   266篇
  2011年   243篇
  2010年   127篇
  2009年   113篇
  2008年   146篇
  2007年   159篇
  2006年   148篇
  2005年   146篇
  2004年   117篇
  2003年   116篇
  2002年   105篇
  2001年   42篇
  2000年   38篇
  1999年   50篇
  1998年   36篇
  1997年   27篇
  1996年   39篇
  1995年   28篇
  1994年   17篇
  1993年   23篇
  1992年   34篇
  1991年   25篇
  1990年   41篇
  1989年   39篇
  1988年   34篇
  1987年   26篇
  1986年   23篇
  1985年   26篇
  1984年   28篇
  1983年   19篇
  1981年   16篇
  1979年   27篇
  1978年   16篇
  1977年   13篇
  1974年   13篇
  1973年   19篇
  1972年   18篇
  1970年   17篇
  1969年   15篇
排序方式: 共有3581条查询结果,搜索用时 46 毫秒
91.
During the mid to late 4th instar period of larval development, the mitochondria of Rhynchosciara spermatocytes undergo highly characteristic morphological changes. In late meiosis the enlarged mitochondria fuse to form a single mitochondrial element which will ultimately extend the length of the spermatid tail. Our studies have shown that synthesis of a circular DNA occurs during this period of mitochondrial “differentiation.” This DNA has a density of 1.681 g/cm3; and its synthesis cannot be detected in somatic tissues such as salivary gland, fat body, or gastric cecum. From analysis of DNA extracted from mitochondrial pellets, we have shown that the circular DNA is associated with the mitochondria. The contour length of the mitochondrial DNA is 9 μm, equivalent to a molecular weight of 18 × 106. Although most metazoan mitochondrial DNAs exhibit contour lengths of approximately 5 μm (10 × 105 daltons), there is no extractable 5 μm circular DNA in these spermatocytes. Therefore, we conclude that either Rhynchosciara spermatocytes possess a distinct 9 μm mitochondrial DNA or that the spermatocyte mitochondrial DNA represents dimers of 5 μm monomers.  相似文献   
92.
93.
94.
In view of a rapid development and increase in efficiency of organic solar cells, reaching their long‐term operational stability represents now one of the main challenges to be addressed on the way toward commercialization of this photovoltaic technology. However, intrinsic degradation pathways occurring in organic solar cells under realistic operational conditions remain poorly understood. The light‐induced dimerization of the fullerene‐based acceptor materials discovered recently is considered to be one of the main causes for burn‐in degradation of organic solar cells. In this work, it is shown that not only the fullerene derivatives but also different types of conjugated polymers and small molecules undergo similar light‐induced crosslinking regardless of their chemical composition and structure. In the case of conjugated polymers, crosslinking of macromolecules leads to a rapid increase in their molecular weight and consequent loss of solubility, which can be revealed in a straightforward way by gel permeation chromatography analysis via a reduction/loss of signal and/or smaller retention times. Results of this work, thus, shift the paradigm of research in the field toward designing a new generation of organic absorbers with enhanced intrinsic photochemical stability in order to reach practically useful operation lifetimes required for successful commercialization of organic photovoltaics.  相似文献   
95.
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus.  相似文献   
96.
97.
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号