首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   71篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   15篇
  2020年   6篇
  2019年   15篇
  2018年   12篇
  2017年   11篇
  2016年   20篇
  2015年   22篇
  2014年   34篇
  2013年   48篇
  2012年   75篇
  2011年   120篇
  2010年   95篇
  2009年   64篇
  2008年   54篇
  2007年   55篇
  2006年   55篇
  2005年   62篇
  2004年   50篇
  2003年   31篇
  2002年   28篇
  2001年   13篇
  2000年   7篇
  1999年   10篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
  1968年   1篇
  1966年   2篇
  1965年   2篇
  1962年   1篇
排序方式: 共有949条查询结果,搜索用时 140 毫秒
101.
We describe the involvement of abscisic acid (ABA) in the control of differential growth of roots and shoots of nutrient limited durum wheat plants. A ten-fold dilution of the optimal concentration of nutrient solution inhibited shoot growth, while root growth remained unchanged, resulting in a decreased shoot/root ratio. Addition of fluridone (inhibitor of ABA synthesis) prevented growth allocation in favour of the roots. This suggests the involvement of ABA in the redirecting of growth in favour of roots under limited nutrient supply. The ABA content was greater in shoots and growing apical root parts of starved plants than in nutrient sufficient plants. Accumulation of ABA in shoots of nutrient deficient plants was linked to a decrease in leaf turgor. Increased flow of ABA in the phloem apparently contributed to the accumulation of ABA in the apical part of the roots. Thus, partitioning of growth between roots and shoots of wheat plants limited in mineral nutrients appears to be modulated by accumulation of ABA in roots. This ABA may originate in the shoots, where its synthesis is stimulated by the loss of leaf turgor.  相似文献   
102.
Background and Aims: Precocious flowering in apple trees is often associated witha smaller tree size. The hypothesis was tested that floral evocationin axillary buds, induced by dwarfing rootstocks, reduces thevigour of annual shoots developing from these buds comparedwith shoots developing from vegetative buds. Methods: The experimental system provided a wide range of possible treevigour using ‘Royal Gala’ scions and M.9 (dwarfing)and MM.106 (non-dwarfing) as rootstocks and interstocks. Second-yearannual shoots were divided into growth units corresponding toperiods (flushes) of growth namely, vegetative spur, extensiongrowth unit, uninterrupted growth unit, floral growth unit (bourse)and extended bourse. The differences between the floral andvegetative shoots were quantified by the constituent growthunits produced. Key Results: The dwarfing influence was expressed, firstly, in reduced proportionsof shoots that contained at least one extension growth unitand secondly, in reduced proportions of bicyclic shoots (containingtwo extension growth units) and shoots with an uninterruptedgrowth unit. In treatments where floral shoots were present,they were markedly less vigorous than vegetative shoots withrespect to both measures. In treatments with M.9 rootstock,vegetative and floral shoots produced on average 0·52and 0·17 extension growth units, compared with 0·77extension growth units per shoot in the MM.106 rootstock treatment.Remarkably, the number of nodes per extension growth unit wasnot affected by the rootstock/interstock treatments. Conclusions: These results showed that rootstocks/interstocks affect thetype of growth units produced during the annual growth cycle,reducing the number of extension growth units, thus affectingthe composition and vigour of annual shoots. This effect isparticularly amplified by the transition to flowering inducedby dwarfing rootstocks. The division of annual shoot into growthunits will also be useful for measuring and modelling effectsof age on apple tree architecture.  相似文献   
103.
104.
Genetic differences between two subspecies of Dolly Varden, northern Salvelinus malma malma and southern Salvelinus malma krascheninnikovi, from rivers of eastern Russia were studied. Mitochondrial DNA was analyzed by restriction fragment length polymorphisms (RFLP) performed on products amplified with polymerase chain reaction. Three adjacent segments (approximately 7670 bp), comprising 47% of the mitochondrial genome were used: two encoding the five complete NADH dehydrogenase subunits and the other the cytochrome b gene and the control region (D-loop). Total composite haplotypes 46 were found among 136 fishes using RFLP analysis with 14 restriction enzymes. The amount of nucleotide divergence between haplotypes of two subspecies of Dolly Varden was estimated to be approximately 4%. The differences in the level of nucleotide diversity, mismatch distribution between haplotypes, and population-genetic structure of two subspecies of Dolly Varden suggest that these two forms have existed separately for a long time.  相似文献   
105.
We have analyzed 7,137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNA(Lys) region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.9 and 0.6%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9-bp deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.  相似文献   
106.
107.
Klyuyeva A  Tuganova A  Popov KM 《Biochemistry》2008,47(32):8358-8366
Mitochondrial pyruvate dehydrogenase kinase 2 (PDHK2) phosphorylates the pyruvate dehydrogenase multienzyme complex (PDC) and thereby controls the rate of oxidative decarboxylation of pyruvate. The activity of PDHK2 is regulated by a variety of metabolites such as pyruvate, NAD (+), NADH, CoA, and acetyl-CoA. The inhibitory effect of pyruvate occurs through the unique binding site, which is specific for pyruvate and its synthetic analogue dichloroacetate (DCA). The effects of NAD (+), NADH, CoA, and acetyl-CoA are mediated by the binding site that recognizes the inner lipoyl-bearing domain (L2) of the dihydrolipoyl transacetylase (E2). Both allosteric sites are separated from the active site of PDHK2 by more than 20 A. Here we show that mutations of three amino acid residues located in the vicinity of the active site of PDHK2 (R250, T302, and Y320) make the kinase resistant to the inhibitory effect of DCA, thereby uncoupling the active site from the allosteric site. In addition, we provide evidence that substitutions of R250 and T302 can partially or completely uncouple the L2-binding site. Based on the available structural data, R250, T302, and Y320 stabilize the "open" and "closed" conformations of the built-in lid that controls the access of a nucleotide into the nucleotide-binding cavity. This strongly suggests that the mobility of ATP lid is central to the allosteric regulation of PDHK2 activity serving as a conformational switch required for communication between the active site and allosteric sites in the kinase molecule.  相似文献   
108.
Evolution of proteins encoded in nucleotide sequences began with the advent of the triplet code. The chronological order of the appearance of amino acids on the evolution scene and the steps in the evolution of the triplet code have been recently reconstructed (Trifonov, 2000b) on the basis of 40 different ranking criteria and hypotheses. According to the consensus chronology, the pair of complementary GGC and GCC codons for the amino acids alanine and glycine appeared first. Other codons appeared as complementary pairs as well, which divided their respective amino acids into two alphabets, encoded by triplets with either central purines or central pyrimidines: G, D, S, E, N, R, K, Q, C, H, Y, and W (Glycine alphabet G) and A, V, P, S, L, T, I, F, and M (Alanine alphabet A). It is speculated that the earliest polypeptide chains were very short, presumably of uniform length, belonging to two alphabet types encoded in the two complementary strands of the earliest mRNA duplexes. After the fusion of the minigenes, a mosaic of the alphabets would form. Traces of the predicted mosaic structure have been, indeed, detected in the protein sequences of complete prokaryotic genomes in the form of weak oscillations with the period 12 residues in the form of alteration of two types of 6 residue long units. The next stage of protein evolution corresponded to the closure of the chains in the loops of the size 25–30 residues (Berezovsky et al., 2000). Autocorrelation analysis of proteins of 23 complete archaebacterial and eubacterial genomes revealed that the preferred distances between valine, alanine, glycine, leucine, and isoleucine along the sequences are in the same range of 25–30 residues, indicating that the loops are primarily closed by hydrophobic interactions between the ends of the loops. The loop closure stage is followed by the formation of typical folds of 100–200 amino acids, via end-to-end fusion of the genes encoding the loop-size chains. This size was apparently dictated by the optimal ring closure for DNA. In both cases the closure into the ring (loop) rendered evolutionarily advantageous stability to the respective structures. Further gene fusions lead to the formation of modern multidomain proteins. Recombinational gene splicing is likely to have appeared after the DNA circularization stage. Received: 21 December 2000 / Accepted: 28 February 2001  相似文献   
109.
The type III secretion system of the Salmonella flagellum consists of 6 integral membrane proteins: FlhA, FlhB, FliO, FliP, FliQ, and FliR. However, in some other type III secretion systems, a homologue of FliO is apparently absent, suggesting it has a specialized role. Deleting the fliO gene from the chromosome of a motile strain of Salmonella resulted in a drastic decrease of motility. Incubation of the ΔfliO mutant strain in motility agar, gave rise to pseudorevertants containing extragenic bypass mutations in FliP at positions R143H or F190L. Using membrane topology prediction programs, and alkaline phosphatase or GFPuv chimeric protein fusions into the FliO protein, we demonstrated that FliO is bitopic with its N-terminus in the periplasm and C-terminus in the cytoplasm. Truncation analysis of FliO demonstrated that overexpression of FliO43–125 or FliO1–95 was able to rescue motility of the ΔfliO mutant. Further, residue leucine 91 in the cytoplasmic domain was identified to be important for function. Based on secondary structure prediction, the cytoplasmic domain, FliO43–125, should contain beta-structure and alpha-helices. FliO43–125-Ala was purified and studied using circular dichroism spectroscopy; however, this domain was disordered, and its structure was a mixture of beta-sheet and random coil. Coexpression of full-length FliO with FliP increased expression levels of FliP, but coexpression with the cytoplasmic domain of FliO did not enhance FliP expression levels. Overexpression of the cytoplasmic domain of FliO further rescued motility of strains deleted for the fliO gene expressing bypass mutations in FliP. These results suggest FliO maintains FliP stability through transmembrane domain interaction. The results also demonstrate that the cytoplasmic domain of FliO has functionality, and it presumably becomes structured while interacting with its binding partners.  相似文献   
110.
Copy number variation (CNV) plays a role in pathogenesis of many human diseases, especially cancer. Several whole genome CNV association studies have been performed for the purpose of identifying cancer associated CNVs. Here we undertook a novel approach to whole genome CNV analysis, with the goal being identification of associations between CNV of different genes (CNV-CNV) across 60 human cancer cell lines. We hypothesize that these associations point to the roles of the associated genes in cancer, and can be indicators of their position in gene networks of cancer-driving processes. Recent studies show that gene associations are often non-linear and non-monotone. In order to obtain a more complete picture of all CNV associations, we performed omnibus univariate analysis by utilizing dCov, MIC, and HHG association tests, which are capable of detecting any type of association, including non-monotone relationships. For comparison we used Spearman and Pearson association tests, which detect only linear or monotone relationships. Application of dCov, MIC and HHG tests resulted in identification of twice as many associations compared to those found by Spearman and Pearson alone. Interestingly, most of the new associations were detected by the HHG test. Next, we utilized dCov''s and HHG''s ability to perform multivariate analysis. We tested for association between genes of unknown function and known cancer-related pathways. Our results indicate that multivariate analysis is much more effective than univariate analysis for the purpose of ascribing biological roles to genes of unknown function. We conclude that a combination of multivariate and univariate omnibus association tests can reveal significant information about gene networks of disease-driving processes. These methods can be applied to any large gene or pathway dataset, allowing more comprehensive analysis of biological processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号