首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10122篇
  免费   584篇
  国内免费   31篇
  2024年   16篇
  2023年   105篇
  2022年   171篇
  2021年   541篇
  2020年   330篇
  2019年   426篇
  2018年   456篇
  2017年   328篇
  2016年   468篇
  2015年   530篇
  2014年   634篇
  2013年   797篇
  2012年   846篇
  2011年   727篇
  2010年   441篇
  2009年   355篇
  2008年   444篇
  2007年   444篇
  2006年   391篇
  2005年   385篇
  2004年   298篇
  2003年   252篇
  2002年   227篇
  2001年   110篇
  2000年   98篇
  1999年   80篇
  1998年   60篇
  1997年   31篇
  1996年   36篇
  1995年   41篇
  1994年   25篇
  1993年   28篇
  1992年   47篇
  1991年   42篇
  1990年   46篇
  1989年   42篇
  1988年   45篇
  1987年   33篇
  1986年   30篇
  1985年   37篇
  1984年   33篇
  1983年   27篇
  1982年   21篇
  1981年   26篇
  1980年   13篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
Administration of methamphetamine (METH) to animals causes loss of DA terminals in the brain. The manner by which METH causes these changes in neurotoxicity is not known. We have tested the effects of this drug in copper/zinc (CuZn)-superoxide dismutase transgenic (SOD Tg) mice, which express the human CuZnSOD gene. In nontransgenic (non-Tg) mice, acute METH administration causes significant decreases in DA and dihydroxyphenylacetic acid (DOPAC) in the striata of non-Tg mice. In contrast, there were no significant decreases in striatal DA in the SOD Tg mice. The effects of METH on DOPAC were also attenuated in SOD Tg mice. Chronic METH administration caused decreases in striatal DA and DOPAC in the non-Tg mice, but not in the SOD-Tg mice. Similar studies were carried out with 1-methyl-1,2,3,6-tetrahydropyridine (MPTP), which also causes striatal DA and DOPAC depletion. As in the case of METH, MPTP causes marked depletion of DA and DOPAC in the non-Tg mice, but not in the SOD Tg mice. These results suggest that the mechanisms of toxicity of both METH and MPTP involve superoxide radical formation.  相似文献   
122.
Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell lineT1074, with IC50 value of 32.5±0.5μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.  相似文献   
123.
Arduous efforts have been made in the last three decades to elucidate the role of insulin in the brain. A growing number of evidences show that insulin is involved in several physiological function of the brain such as food intake and weight control, reproduction, learning and memory, neuromodulation and neuroprotection. In addition, it is now clear that insulin and insulin disturbances particularly diabetes mellitus may contribute or in some cases play the main role in development and progression of neurodegenerative and neuropsychiatric disorders. Focusing on the molecular mechanisms, this review summarizes the recent findings on the involvement of insulin dysfunction in neurological disorders like Alzheimer’s disease, Parkinson’s disease and Huntington’s disease and also mental disorders like depression and psychosis sharing features of neuroinflammation and neurodegeneration.  相似文献   
124.
Catechol oxidase was distributed in soluble and particulate fractions of Solanum melongena. The purified preparation appears to be homogeneous by polyacrylamide gel electrophoresis. The enzyme shows two pH maxima—with catechol, 6.5 and 7.5; and with dopa, 6.5 and 7.9. The latent form of the enzyme does not occur in S. melongena. The preparation resembles the enzyme from other sources in substrate specificity towards various mono- and diphenols, having a higher affinity for catechol than dopa; this tendency increases on purification. The cresolase activity decreases with purification and a lag period with p-cresol is observed. The oxidation of mono- and diphenols is inhibited by ascorbic acid, sulphydryl compounds and chelating agents.  相似文献   
125.
126.
Kidney failure is one of the most important challenges in medicine. In this study, we used HEK-293 kidney cells to evaluate and compare changes in the expr  相似文献   
127.
128.
Mudgal  N.  Yupapin  Preecha  Ali  Jalil  Singh  G. 《Plasmonics (Norwell, Mass.)》2020,15(5):1221-1229
Plasmonics - In the present work, a highly sensitive SPR biosensor based on silver (Ag), barium titanate (BaTiO3), graphene, and affinity layer is proposed for the detection of Pseudomonas...  相似文献   
129.
Water stress is one of the main abiotic factors that reduces plant growth, mainly due to high evaporative demand and low water availability. In order to evaluate the effects of drought stress on certain morphological and physiological characteristics of two canola cultivars, we conducted a factorial experiment based on a completely randomized design. The findings show that drought stress exacerbations result in the plant's response to stress due to increased canola resistance caused by changes in plant pigments, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase and malondialdehyde, glucose, galactose, rhamnose and xylose. These in turn ultimately influence the morphological characteristics of canola. Drought stress reduces the concentration of carotenoids, chlorophyll a, chlorophyll b, total chlorophylls; however, glucose, galactose, rhamnose, xylose, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase, malondialdehyde (in leaves and roots) and the chlorophyll a and b ratios were increased. Reduction of plant height, stem height, root length, fresh and dry weight of canola treated with 300 g/l PEG compared to non‐treatment were 0.264, 0.236, 0.394, 0.183 and 0.395, respectively. From the two canola cultivars, the morphological characteristics of the NIMA increased compared to the Ks7 cultivar. Interaction effects of cultivar and drought stress showed that NIMA cultivar without treatment had the highest number of morphological characteristics such as carotenoid concentration, chlorophyll a, chlorophyll b, total chlorophylls a and b, whereas the cultivar with 300 g/l PEG (drought stress) had the highest amount of proline, malondialdehyde, soluble sugars and enzymes in leaves and roots. Increasing activity of oxidative enzymes and soluble sugars in canola under drought stress could be a sign of their relative tolerance to drought stress.  相似文献   
130.
International Journal of Peptide Research and Therapeutics - The accurate modelling and scoring of protein–peptide (Pr–Pe) complexes are determining factors in the drug discovery...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号