首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10113篇
  免费   586篇
  国内免费   31篇
  2024年   16篇
  2023年   106篇
  2022年   172篇
  2021年   532篇
  2020年   330篇
  2019年   424篇
  2018年   454篇
  2017年   328篇
  2016年   470篇
  2015年   531篇
  2014年   636篇
  2013年   797篇
  2012年   844篇
  2011年   727篇
  2010年   441篇
  2009年   354篇
  2008年   444篇
  2007年   445篇
  2006年   390篇
  2005年   384篇
  2004年   298篇
  2003年   252篇
  2002年   227篇
  2001年   110篇
  2000年   98篇
  1999年   81篇
  1998年   60篇
  1997年   31篇
  1996年   36篇
  1995年   41篇
  1994年   25篇
  1993年   28篇
  1992年   47篇
  1991年   42篇
  1990年   47篇
  1989年   42篇
  1988年   44篇
  1987年   33篇
  1986年   31篇
  1985年   37篇
  1984年   33篇
  1983年   27篇
  1982年   21篇
  1981年   26篇
  1980年   13篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1976年   22篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
131.
Muscle wasting represents a constant pathological feature of common chronic gastrointestinal diseases, including liver cirrhosis (LC), inflammatory bowel diseases (IBD), chronic pancreatitis (CP) and pancreatic cancer (PC), and is associated with increased morbidity and mortality. Recent clinical and experimental studies point to the existence of a gut‐skeletal muscle axis that is constituted by specific gut‐derived mediators which activate pro‐ and anti‐sarcopenic signalling pathways in skeletal muscle cells. A pathophysiological link between both organs is also provided by low‐grade systemic inflammation. Animal models of LC, IBD, CP and PC represent an important resource for mechanistic and preclinical studies on disease‐associated muscle wasting. They are also required to test and validate specific anti‐sarcopenic therapies prior to clinical application. In this article, we review frequently used rodent models of muscle wasting in the context of chronic gastrointestinal diseases, survey their specific advantages and limitations and discuss possibilities for further research activities in the field. We conclude that animal models of LC‐, IBD‐ and PC‐associated sarcopenia are an essential supplement to clinical studies because they may provide additional mechanistic insights and help to identify molecular targets for therapeutic interventions in humans.  相似文献   
132.
In this study, we extracted the essential oils of the stem, leaf, and flower of Achillea filipendulina, analyzed them, and studied their antibacterial properties. Of 16, 53, and 35 compounds identified in the stem, leaf, and flowers, respectively, only five are present in all three segments of the plant. The essential oil of the stem was mainly composed of neryl acetate, spathulenol, carvacrol, santolina alcohol, and trans‐caryophyllene oxide. However, the main identified components of leaf were 1,8‐cineole, camphor, ascaridole, trans‐isoascaridole, and piperitone oxide and the main components of the flower oil were ascaridole, trans‐isoascaridole, 1,8‐cineole, p‐cymene, and camphor. The extracted oil from different segments demonstrated varying antibacterial properties against both Gram‐positive and Gram‐negative bacteria, demonstrated by disk, minimum inhibitory concentration, and minimum bactericidal concentration methods. These suggest that the application of all segments of aerial parts of A. filipendulina may have a better therapeutic effect in fighting pathogenic systems.  相似文献   
133.
Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development.  相似文献   
134.
The relationship between the severity of dengue infection and allergy is still obscure. We conducted an electronic search across 12 databases for relevant articles reporting allergic symptoms, dengue infection, and dengue classification. These studies were categorized according to dengue severity and allergy symptoms, and a meta-analysis was performed by pooling the studies in each category. Among the included 57 articles, pruritus was the most common allergic sign followed by non-specified allergy and asthma(28.6%, 13%, and 6.5%, respectively). Despite the reported significant association of dengue with pruritus and total Ig E level(P \ 0.05), in comparison with non-dengue cases and healthy controls, there was no association between the different severe dengue group with pruritus, skin allergy, food allergy or asthma. However,removing the largest study revealed a significant association between asthma with dengue hemorrhagic fever(DHF) rather than dengue fever(DF). In comparison with DF, DHF was associated with Ig E positivity. Furthermore, specific-Ig E level was higher in secondary DF rather than primary DF. There was a possible association between allergy symptoms and dengue severity progression. Further studies are needed to clarify this association.  相似文献   
135.
Consumers’ demand is increasing for safe foods without impairing the phytochemical and sensory quality. In turn, it has increased research interest in the exploration of innovative food processing technologies. Cold plasma technology is getting popularity now days owing to its high efficacy in decontamination of microbes in fruit and fruit-based products. As a on-thermal approach, plasma processing maintains the quality of fruits and minimizes the thermal effects on nutritional properties. Cold plasma is also exploited for inactivating enzymes and degrading pesticides as both are directly related with quality loss and presently are most important concerns in fresh produce industry. The present review covers the influence of cold plasma technology on reducing microbial risks and enhancing the quality attributes in fruits.  相似文献   
136.

The objective of this study is to enhance the efficiency of copper indium gallium selenide (CIGS) solar cells. To accomplish that, composition grading of absorber layer was carried out by using SILVACO’s technology aided computer design (TCAD) ATLAS program. Results showed a meaningful improvement of output parameters including open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF), and power conversion efficiency (η). For further performance improvement of the cell, Au plasmonic scattering nanoparticles were loaded on the top of the ZnO window layer. Plasmonic nanoparticles can restrict, absorb, navigate, or scatter the incident light. By using the spherical Au nanoparticles, a very good increase in the light absorption in the cell over the reference planar CIGS solar cell was observed. The highest η = 19.01% was achieved for the designed ultra-thin bandgap-graded CIGS solar cell decorated by Au nanoparticles.

  相似文献   
137.

Colloidal nanoparticles (NPs) interact with biological fluids such as human plasma to form a protein coating (corona) on the surface of NPs (NP-protein complex). However, the impact of size and type of NPs on binding of the hard corona to the surface of NPs as well as damping of their optical spectra has not been systematically explored. To elucidate the interaction between biological environment (human plasma) and NPs, a photophysical measurement was conducted to quantify the interaction of two different types of NPs (gold (Au) and silver (Ag)) with common human plasma proteins. The colloidal AuNPs and AgNPs were electrostatically stabilized and varied in diameter from 10 to 80 nm in the presence of common human plasma. The sizes of the NPs were determined using transmission electron microscopy (TEM). Optical absorption spectra were obtained for the complexes. Dynamic light scattering (DLS) measurement and zeta potential were used to characterize the sizes, hydrodynamic diameters, and surface charges of the protein-NPs complexes. Protein separation was performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to isolate and identify the protein bands. The absorption of proteins to the NPs was found to be strongly dependent on the size and type of NPs. The distance between surface of NPs by absorbed protein bound to the NPs gradually increased with size of NPs, particularly for AgNPs with primary diameter of < 50 nm. The chi-square test proved that AgNPs are a good candidate in sensing the protein complex in human plasma compared with AuNPs mainly for the AgNPs with diameter sized 50 nm.

  相似文献   
138.

The interactions between sodium caseinate (NaCas) and basil seed gum (BSG) in the presence of calcium chloride (CaCl2) were investigated. The phase behavior of the mixed aqueous dispersions and their gels revealed a homogeneous mixture, obtained at the higher concentrations of both CaCl2 and BSG. The Herschel-Bulkley model sufficiently fitted the flow behavior of the mixture solution data. Apparent viscosity increased significantly (p < 0.05) by increasing the concentration of BSG, where the addition of CaCl2 had no significant effect on the viscosity of the samples (p > 0.05). Furthermore, there was an increase in thixotropy due to the higher concentrations of BSG and CaCl2. Based on the frequency sweep test, at the low frequencies, a more gel-like behavior was observed in the case of the higher concentrations of either BSG or CaCl2. The rheological and SEM data suggested that the stronger structure of NaCas-BSG gel in the presence of the higher concentrations of CaCl2 was related to the induction of complex formation between the two biopolymers.

  相似文献   
139.
140.
Nisar  M.  Ali  Z.  Ali  A.  Aman  R.  Park  H. J.  Ullah  I.  Ullah  A.  Yun  D. J. 《Russian Journal of Plant Physiology》2020,67(3):515-520
Russian Journal of Plant Physiology - Plant root architecture modulates during developmental stages and adjusts with the environmental condition. The cytosolic calcium which is a ubiquitous...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号