首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   23篇
  2021年   7篇
  2019年   5篇
  2017年   4篇
  2016年   10篇
  2015年   12篇
  2014年   10篇
  2013年   13篇
  2012年   17篇
  2011年   9篇
  2010年   14篇
  2009年   8篇
  2008年   11篇
  2007年   15篇
  2006年   10篇
  2005年   10篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   7篇
  1988年   8篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1983年   4篇
  1982年   9篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1973年   3篇
  1972年   2篇
  1971年   4篇
  1970年   5篇
  1969年   3篇
  1968年   3篇
  1967年   5篇
  1966年   5篇
  1965年   3篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
21.
The discovery of naturally evolved fluorescent proteins and their subsequent tuning by protein engineering provided the basis for a large family of genetically encoded biosensors that report a variety of physicochemical processes occurring in living tissue. These optogenetic reporters are powerful tools for live‐cell microscopy and quantitative analysis at the subcellular level. In this review, we present an overview of the transduction mechanisms that have been exploited for engineering these genetically encoded reporters. Finally, we discuss current and future efforts towards the combined use of various optogenetic actuators and reporters for simultaneously controlling and imaging the physiology of cells and tissues.  相似文献   
22.
23.
In the face of rising antimicrobial resistance, there is an urgent need for the development of efficient and effective anti-infective compounds. Adaptive resistance, a reversible bacterial phenotype characterized by the ability to surmount antibiotic challenge without mutation, is triggered to cope in situ with several stressors and is very common clinically. Thus, it is important to target stress-response effectors that contribute to in vivo adaptations and associated lifestyles such as biofilm formation. Interfering with these proteins should provide a means of dismantling bacterial virulence for treating infectious diseases, in combination with conventional antibiotics.  相似文献   
24.
Chytridiomycosis is a fatal disease of amphibians, caused by the amphibian chytrid Batrachochytrium dendrobatidis. The disease is unusual in that it may drive many amphibian species to local extinction during outbreaks. These dramatic declines in host population numbers could be facilitated if the pathogen can grow as a saprobe or on alternative hosts, a feature common to other chytrid species. This is also supported by in vitro work that demonstrates B. dendrobatidis can grow and reproduce in the absence of amphibian cells. In a previous study, B. dendrobatidis was detected on freshwater shrimp from rain forest streams in northern Queensland, Australia, using diagnostic PCR. We set out to confirm and further investigate the presence of B. dendrobatidis on crustaceans by carrying out more extensive sampling of shrimp in the field, experimental B. dendrobatidis infection trials using shrimp and crayfish, and PCR verification of the presence of B. dendrobatidis from shrimp samples that previously tested positive. We could not confirm the presence of B. dendrobatidis on shrimp, and report that original positive tests in shrimp reported by Rowley et al. (2006) were likely false. Thus, we suggest that shrimp may not be an important reservoir host for B. dendrobatidis.  相似文献   
25.
Fluctuations in intracellular free calcium concentration ([Ca2+]i) is thought to be one mechanism by which cells transduce mechanical signals into biological responses. Primary cultures of bovine articular chondrocytes (BAC) respond to oscillating fluid flow with a transient rise in [Ca2+]i. However, specific down-stream effects of [Ca2+]i on gene expression and phenotype in BAC remain to be defined. The present work was designed to determine whether [Ca2+]i mobilization regulates aggrecan mRNA levels. [Ca2+]i was transiently elevated by exposing BAC to the [Ca2+]-specific ionophore, ionomycin. The results show that ionomycin increases [Ca2+]i in a dose-dependent fashion. Semi-quantitative real time (RT)-PCR was used to study the effects of increased [Ca2+]i on steady state levels of aggrecan mRNA. Four hours after a brief exposure to 1.5 microM ionomycin, BAC displayed a nearly four-fold decrease in aggrecan mRNA levels compared to control cells. This effect of ionomycin on aggrecan mRNA was no longer evident 6 or 10 h later. Despite previous observations that oscillating fluid flow elicits increased [Ca2+]i in BAC, it did not affect aggrecan mRNA levels. Taken together, these data suggest that ionomycin-induced [Ca2+]i fluctuations regulate aggrecan mRNA levels, but that flow induced [Ca2+]i fluctuations do not.  相似文献   
26.
Large volumes of data are routinely collected during bioprocess operations and, more recently, in basic biological research using genomics-based technologies. While these data often lack sufficient detail to be used for mechanism identification, it is possible that the underlying mechanisms affecting cell phenotype or process outcome are reflected as specific patterns in the overall or temporal sensor logs. This raises the possibility of identifying outcome-specific fingerprints that can be used for process or phenotype classification and the identification of discriminating characteristics, such as specific genes or process variables. The aim of this work is to provide a systematic approach to identifying and modeling patterns in historical records and using this information for process classification. This approach differs from others in that emphasis is placed on analyzing the data structure first and thereby extracting potentially relevant features prior to model creation. The initial step in this overall approach is to first identify the discriminating features of the relevant measurements and time windows, which can then be subsequently used to discriminate among different classes of process behavior. This is achieved via a mean hypothesis testing algorithm. Next, the homogeneity of the multivariate data in each class is explored via a novel cluster analysis technique called PC1 Time Series Clustering to ensure that the data subsets used accurately reflect the variability displayed in the historical records. This will be the topic of the second paper in this series. We present here the method for identifying discriminating features in data via mean hypothesis testing along with results from the analysis of case studies from industrial fermentations Copyright 2000 Academic Press.  相似文献   
27.
Rhizosphere is the complex place of numerous interactions between plant roots, microbes and soil fauna. Whereas plant interactions with aboveground organisms are largely described, unravelling plant belowground interactions remains challenging. Plant root chemical communication can lead to positive interactions with nodulating bacteria, mycorriza or biocontrol agents or to negative interactions with pathogens or root herbivores. A recent study1 suggested that root exudates contribute to plant pathogen resistance via secretion of antimicrobial compounds. These findings point to the importance of plant root exudates as belowground signalling molecules, particularly in defense responses. In our report,2 we showed that under Fusarium attack the barley root system launched secretion of phenolic compounds with antimicrobial activity. The secretion of de novo biosynthesized t-cinnamic acid induced within 2 days illustrates the dynamic of plant defense mechanisms at the root level. We discuss the costs and benefits of induced defense responses in the rhizosphere. We suggest that plant defense through root exudation may be cultivar dependent and higher in wild or less domesticated varieties.Key words: root exudates, plant defense, t-cinnamic acid, fusarium, induced defensePlants grow and live in very complex and changing ecosystems. Because plants lack the mobility to escape from attack by pathogens or herbivores, they have developed constitutive and in addition inducible defenses that are triggered by spatiotemporally dynamic signaling mechanisms. These defenses counteract the aggressor directly via toxins or defense plant structures or indirectly by recruitment of antagonists of aggressors. Whereas induced defenses are well described in aboveground interactions, evidence of the occurrence of such mechanisms in belowground interactions remains limited. The biosynthesis of a defensive molecule could be both constitutive and inducible with a low level of a preformed pool (Fig. 1). In addition, upon encounter of an attacking organism, those levels could be induced to rise locally to a high level of active compound that is able to disarm the pathogen.2,3 Only a few examples show that root exudates play a role in induced plant defense. Hairy roots of Ocimum basilicum secrete rosmarinic acid only when challenged by the pathogenic fungus Pythium ultimum.4 Wurst et al.5 reported on the induction of irridoid glycosides in root exudates of Plantago lanceolata in presence of nematodes. In vivo labelling experiments2 with 13CO2 showed the induction of phenolic compounds secreted by barley roots after Fusarium graminearum infection and the de novo biosynthesis of root secreted t-cinnamic acid within 2 days. These results show that the pool of induced t-cinnamic acid originated from both pre-formed and newly formed carbon pools (Fig. 1), highlighting a case of belowground induced defense inside and outside the root system.Open in a separate windowFigure 1Suggested mechanisms for the induction of root defense exudates in barley in response to Fusarium attack. Upon pathogen attack by Fusarium, the initial preformed pool of phenolic compounds is increased by the addition of inducible, de novo biosynthesized t-cinnamic acid. Both, the preformed pool and the de novo biosynthesized pool fuel the exudation of defense compounds from infected roots.The concept of fitness costs is frequently presented to explain the coexistence of both constitutive and induced defense.6 In the case of induced defense, resources are invested in defenses only when the plant is under attack. In the absence of an infection, plants can optimize allocation of their resources to reproduction and growth to compete with neighbours.7 Constitutive defenses are thought to be more beneficial when the probability of attack is high, whereas adjustable, induced defenses are more valuable to fight against an unpredictable pathogen. Non disturbed soil is a heterogeneous matrix where biodiversity is very high and patchy8,9 and organism motility is rather restricted.10 As a consequence of the patchiness, belowground environment is expected to be favourable to selection for induced responses.11 The absence of defense root exudates between two infections may form an unpredictable environment for soil pathogens and reduce the chance for adaptation of root attackers. Plants may also use escape strategies to reduce the effect of belowground pathogens. Henkes et al. (unpublished) showed that Fusarium-infected barley plants reduced carbon allocation towards infected roots within a day and increased allocation carbon to uninfected roots. These results illustrate how reallocation of carbon toward non infected root parts represents a way to limit the negative impact of root infection.We have demonstrated the potential of barley plants to defend themselves against soil pathogen by root exudation.2 Even the barley cultivar ‘Barke’ used in our study, a modern cultivated variety, was able to launch defense machinery via exudation of antimicrobial compounds when infected by F. graminearum. We suggest that plant defense through root exudation might be cultivar dependent and perhaps higher in wild or less domesticated varieties. Taddei et al.12 reported that constitutivelyproduced root exudates from a resistant Gladiolus cultivar inhibit spore germination of Fusarium oxysporum whereas root exudates from a susceptible cultivar do not affect F. oxysporum germination. Root exudates from the resistant cultivar contained higher amounts of aromaticphenolic compounds compared to the susceptible cultivar and these compounds may be responsible for the inhibition of spore germination. Metabolic profiling of wheat cultivars, ‘Roblin’ and ‘Sumai3’, respectively, susceptible and resistant to Fusarium Head Blight, showed that t-cinnamic acid was a discriminating factor responsible for resistance/defense function.13 Therefore it is likely that wild barley varieties hold higher defense capacities compare to cultivated varieties selected for high yield. In the future, plant breeders in organic and low-input farming could use root-system defense ability as new trait in varietal variation.  相似文献   
28.
Abundance of Fabaceae declines in representation through post-fire-succession in fynbos vegetation of the Cape Floristic Region (CFR). This reduction in legume occurrence coincides with a known decline in post-fire soil P availability. It was hypothesized that the disappearance of legume species during post-fire succession is due to an inability to acquire P effectively from sparingly soluble sources. P-acquisition strategies and response to P supply were compared between legume (Aspalathus, Cyclopia, Indigofera, Podalyria) and non-legume (Elegia, Leucadendron, Protea) genera when supplied with 1 or 10 mg P kg?1 dry sand. Each genus consisted of a seeder (non-persistent) and resprouter (persistent) species. Non-legumes showed a greater investment in below-ground biomass, more root clusters, with higher concentrations of carboxylates exuded by cluster roots and carboxylates that were better suited to the mobilization of sparingly soluble P compared to legumes. The growth response to increased P supply was 53% higher in legumes than in non-legumes. The lack of a growth response to an elevated P supply in the non-legumes was attributed to N-limitation. Legume resprouters had a higher investment in cluster-root biomass and a lower capacity to down-regulate P-uptake than the seeders. Therefore the inability to acquire sufficient P from low concentration and sparingly soluble soil P-sources may contribute to the lack of indigenous legume persistence in fynbos vegetation of the CFR.  相似文献   
29.
Through an in vivo screening model, we developed the in vivo SAR of beta-alkylthio indolyl carbinols. Through these efforts we identified a compound with potent oral in vivo efficacy in both immature and mature rat prostate weight reduction models and in a murine xenograft prostate cancer model.  相似文献   
30.
Human herpesvirus 6 (HHV-6) may cause severe complications after haematopoietic stem cell transplantation (HSCT). Monitoring this virus and providing precise, rapid and early diagnosis of related clinical diseases, constitute essential measures to improve outcomes. A prospective survey on the incidence and clinical features of HHV-6 infections after HSCT has not yet been conducted in Brazilian patients and the impact of this infection on HSCT outcome remains unclear. A rapid test based on real-time quantitative polymerase chain reaction (qPCR) has been optimised to screen and quantify clinical samples for HHV-6. The detection step was based on reaction with TaqMan® hydrolysis probes. A set of previously described primers and probes have been tested to evaluate efficiency, sensitivity and reproducibility. The target efficiency range was 91.4% with linearity ranging from 10-106 copies/reaction and a limit of detection of five copies/reaction or 250 copies/mL of plasma. The qPCR assay developed in the present study was simple, rapid and sensitive, allowing the detection of a wide range of HHV-6 loads. In conclusion, this test may be useful as a practical tool to help elucidate the clinical relevance of HHV-6 infection and reactivation in different scenarios and to determine the need for surveillance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号