首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   1篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  1999年   3篇
  1994年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
41.
Periprosthetic joint infections present a challenging problem in orthopaedics. Conventional methods for detection of arthroplasty infections rely on bacterial culture of synovial fluid aspirates. During recent years, however, molecular tests that are based on DNA amplification by the polymerase chain reaction (PCR), followed by electrophoretic analysis of the products, have been introduced. We report a simple and inexpensive assay that allows visual detection and confirmation of the PCR-amplified sequences by hybridization within minutes. The assay is performed in a dry reagent dipstick format (strip) and does not require special instrumentation. Universal primers are used for PCR of the 23S ribosomal RNA (rRNA) gene. The biotinylated amplification product is hybridized with dA-tailed probes that are specific for six pathogens commonly involved in periprosthetic joint infections. The mixture is applied to the strip, which is then immersed in the appropriate buffer. The buffer migrates along the strip by capillary action and rehydrates gold nanoparticles with oligo(dT) strands attached to their surface. The nanoparticles bind to the target DNA through hybridization, and the hybrids are captured by immobilized streptavidin at the test zone of the strip, producing a characteristic red line. Unbound nanoparticles are captured by immobilized oligo(dT) strands at the control zone of the strip, generating a second line. The dipstick test was applied to the detection of Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faesium, and Haemophilus influenza. Twelve samples of synovial fluids from patients were analyzed for the detection and identification of the infection caused by the six pathogens. The results were compared with bacterial cultures.  相似文献   
42.
The role of hydrogen peroxide (H2O2) and various antioxidants in the regulation of expression of the three Cat and Gst1 genes of maize ( Zea mays L.) has been investigated. Low concentrations of H2O2 appeared to inhibit Cat1 , Cat3 , and Gst1 gene expression, while higher doses strongly induced these genes. Time course experiments indicated that high concentrations of H2O2 induced Cat1 , Cat2 , and Gst1 gene expression to higher levels, and in less time, than lower H2O2 concentrations. Induction of Cat3 was superimposed on the circadian regulation of the gene. These results demonstrate a direct signaling action of H2O2 in the regulation of antioxidant gene responses in maize.The effects of the antioxidant compounds N-acetylcysteine, pyrrolidine dithiocarbamate, hydroquinone, and the electrophile antioxidant responsive element (ARE)-inducer β -naphthoflavone were quite different and specific for each gene/compound/concentration combination examined. The response of each gene to each antioxidant compound tested was unique, suggesting that the ability of these compounds to affect expression of the maize Cat and Gst1 genes may not be the result of a common (antioxidant) mode of action. A putative regulatory ARE motif involved in the regulation of antioxidant and oxidative stress gene responses in mammalian systems is present in the promoter of all three maize catalase genes and we tested its ability to interact with nuclear extracts prepared from 10 days post-imbibition senescing scutella. Protein-DNA interactions in the ARE motif and the U2 snRNA homologous regions of the Cat1 promoter were observed, suggesting that ARE may play a role in the high induction of Cat1 in a tissue which, due to senescence, is under oxidative stress.  相似文献   
43.
44.
45.
Three Escherichia coli glutaredoxins catalyze GSH-disulfide oxidoreductions, but the atypical 24-kDa glutaredoxin 2 (Grx2, grxB gene), in contrast to the 9-kDa glutaredoxin 1 (Grx1, grxA gene) and glutaredoxin 3 (Grx3, grxC gene), is not a hydrogen donor for ribonucleotide reductase. To improve the understanding of glutaredoxin function, a null mutant for grxB (grxB(-)) was constructed and combined with other mutations. Null mutants for grxB or all three glutaredoxin genes were viable in rich and minimal media with little changes in their growth properties. Expression of leaderless alkaline phosphatase showed that Grx1 and Grx2 (but not Grx3) contributed in the reduction of cytosolic protein disulfides. Moreover, Grx1 could catalyze disulfide formation in the oxidizing cytosol of combined null mutants for glutathione reductase and thioredoxin 1. grxB(-) cells were more sensitive to hydrogen peroxide and other oxidants and showed increased carbonylation of intracellular proteins, particularly in the stationary phase. Significant up-regulation of catalase activity was observed in null mutants for thioredoxin 1 and the three glutaredoxins, whereas up-regulation of glutaredoxin activity was observed in catalase-deficient strains with additional defects in the thioredoxin pathway. The expression of catalases is thus interconnected with the thioredoxin/glutaredoxin pathways in the antioxidant response.  相似文献   
46.
Glutaredoxins are ubiquitous proteins that catalyze the reduction of disulfides via reduced glutathione (GSH). Escherichia coli has three glutaredoxins (Grx1, Grx2, and Grx3), all containing the classic dithiol active site CPYC. We report the cloning, expression, and characterization of a novel monothiol E. coli glutaredoxin, which we name glutaredoxin 4 (Grx4). The protein consists of 115 amino acids (12.7 kDa), has a monothiol (CGFS) potential active site and shows high sequence homology to the other monothiol glutaredoxins and especially to yeast Grx5. Experiments with gene knock-out techniques showed that the reading frame encoding Grx4 was essential. Grx4 was inactive as a GSH-disulfide oxidoreductase in a standard glutaredoxin assay with GSH and hydroxyethyl disulfide in a complete system with NADPH and glutathione reductase. An engineered CGFC active site mutant did not gain activity either. Grx4 in reduced form contained three thiols, and treatment with oxidized GSH resulted in glutathionylation and formation of a disulfide. Remarkably, this disulfide of Grx4 was a direct substrate for NADPH and E. coli thioredoxin reductase, whereas the mixed disulfide was reduced by Grx1. Reduced Grx4 showed the potential to transfer electrons to oxidized E. coli Grx1 and Grx3. Grx4 is highly abundant (750-2000 ng/mg of total soluble protein), as determined by a specific enzyme-link immunosorbent assay, and most likely regulated by guanosine 3',5'-tetraphosphate upon entry to stationary phase. Grx4 was highly elevated upon iron depletion, suggesting an iron-related function for the protein.  相似文献   
47.
The ubiquitous glutaredoxin protein family is present in both prokaryotes and eukaryotes, and is closely related to the thioredoxins, which reduce their substrates using a dithiol mechanism as part of the cellular defense against oxidative stress. Recently identified monothiol glutaredoxins, which must use a different functional mechanism, appear to be essential in both Escherichia coli and yeast and are well conserved in higher order genomes. We have employed high resolution NMR to determine the three-dimensional solution structure of a monothiol glutaredoxin, the reduced E. coli Grx4. The Grx4 structure comprises a glutaredoxin-like alpha-beta fold, founded on a limited set of strictly conserved and structurally critical residues. A tight hydrophobic core, together with a stringent set of secondary structure elements, is thus likely to be present in all monothiol glutaredoxins. A set of exposed and conserved residues form a surface region, implied in glutathione binding from a known structure of E. coli Grx3. The absence of glutaredoxin activity in E. coli Grx4 can be understood based on small but significant differences in the glutathione binding region, and through the lack of a conserved second GSH binding site. MALDI experiments suggest that disulfide formation on glutathionylation is accompanied by significant structural changes, in contrast with dithiol thioredoxins and glutaredoxins, where differences between oxidized and reduced forms are subtle and local. Structural and functional implications are discussed with particular emphasis on identifying common monothiol glutaredoxin properties in substrate specificity and ligand binding events, linking the thioredoxin and glutaredoxin systems.  相似文献   
48.
49.
50.
The stem bark of Raputia simulans (Rutaceae) has been reported to contain simple and dimeric indole alkaloids. Further phytochemical investigation of R. simulans stem bark resulted in the isolation of three new alkaloids. These compounds represent a relatively new category of dimeric indole alkaloids with a cyclohexene moiety in their core. Their structure elucidations were based on NMR and HR‐MS techniques, while structural aspects concerning their relative configuration were investigated using molecular mechanics calculations and NOESY experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号