首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5410篇
  免费   501篇
  国内免费   2篇
  2024年   3篇
  2023年   39篇
  2022年   21篇
  2021年   211篇
  2020年   103篇
  2019年   157篇
  2018年   192篇
  2017年   144篇
  2016年   229篇
  2015年   405篇
  2014年   359篇
  2013年   382篇
  2012年   524篇
  2011年   487篇
  2010年   293篇
  2009年   210篇
  2008年   328篇
  2007年   330篇
  2006年   294篇
  2005年   258篇
  2004年   226篇
  2003年   223篇
  2002年   184篇
  2001年   30篇
  2000年   27篇
  1999年   43篇
  1998年   46篇
  1997年   20篇
  1996年   12篇
  1995年   16篇
  1994年   13篇
  1993年   8篇
  1992年   9篇
  1991年   6篇
  1990年   9篇
  1988年   4篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1977年   4篇
  1973年   5篇
  1969年   2篇
  1968年   2篇
  1967年   4篇
  1963年   2篇
  1962年   2篇
  1957年   2篇
排序方式: 共有5913条查询结果,搜索用时 15 毫秒
31.
D‐type cyclins predominantly regulate progression through the cell cycle by their interactions with cyclin‐dependent kinases (cdks). Here, we show that stimulating mitogenesis of Swiss 3T3 cells with phorbol esters or forskolin can induce divergent responses in the expression levels, localization and activation state of cyclin D1 and cyclin D3. Phorbol ester‐mediated protein kinase C stimulation induces S phase entry which is dependent on MAPK activation and increases the levels and activation of cyclin D1, whereas forskolin‐mediated cAMP‐dependent protein kinase A stimulation induces mitogenesis that is independent of MAPK, but dependent upon mTor and specifically increases the level and activation of cyclin D3. These findings uncover additional levels of complexity in the regulation of the cell cycle at the level of the D‐type cyclins and thus may have important therapeutic implications in cancers where specific D‐cyclins are overexpressed. J. Cell. Physiol. 225: 638–645, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
32.
Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients.  相似文献   
33.
34.
35.
36.
Operation Crayweed focuses on the restoration of underwater forests that disappeared from the coastline of Sydney, Australia’s largest city, 40 years previously. We show how a combination of science, hands‐on restoration, community engagement and art has helped the project to reach its goals as well as raise awareness about the importance of underwater kelp forests that are experiencing global decline.  相似文献   
37.
38.
The host‐microbe relationship is pivotal for oral health as well as for peri‐implant diseases. Peri‐implant mucosa and commensal biofilm play important roles in the maintenance of host‐microbe homeostasis, but little is known about how they interact. We have therefore investigated the early host‐microbe interaction between commensal multispecies biofilm (Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar, Porphyromonas gingivalis) and organotypic peri‐implant mucosa using our three‐dimensional model. After 24 hr, biofilms induced weak inflammatory reaction in the peri‐implant mucosa by upregulation of five genes related to immune response and increased secretion of IL‐6 and CCL20. Biofilm volume was reduced which might be explained by secretion of β‐Defensins‐1, ‐2, and CCL20. The specific tissue reaction without intrinsic overreaction might contribute to intact mucosa. Thus, a relationship similar to homeostasis and oral health was established within the first 24 hr. In contrast, the mucosa was damaged and the bacterial distribution was altered after 48 hr. These were accompanied by an enhanced immune response with upregulation of additional inflammatory‐related genes and increased cytokine secretion. Thus, the homeostasis‐like relationship was disrupted. Such profound knowledge of the host‐microbe interaction at the peri‐implant site may provide the basis to improve strategies for prevention and therapy of peri‐implant diseases.  相似文献   
39.
40.
Research efforts have intensified to foresee the prospects for marine biomes under climate change and anthropogenic drivers over varying temporal and spatial scales. Parallel with these efforts is the utilization of terminology, such as ‘ocean acidification’ (OA) and ‘ocean deoxygenation’ (OD), that can foster rapid comprehension of complex processes driving carbon dioxide (CO2) and oxygen (O2) concentrations in the global ocean and thus, are now widely used in discussions within and beyond academia. However, common usage of the terms ‘acidification’ and ‘deoxygenation’ alone are subjective and, without adequate contextualization, have the potential to mislead inferences over drivers that may ultimately shape the future state of marine ecosystems. Here we clarify the usage of the terms OA and OD as global, climate change‐driven processes and discuss the various attributes of elevated CO2 and reduced O2 syndromes common to coastal ecosystems. We support the use of the existing terms ‘coastal acidification’ and ‘coastal deoxygenation’ because they help differentiate the sometimes rapid and extreme nature of CO2 and O2 syndromes in coastal ecosystems from the global, climate change‐driven processes of OA and OD. Given the complexity and breadth of the processes involved in altering CO2 and O2 concentrations across marine ecosystems, we provide a workflow to enable contextualization and clarification of the usage of existing terms and highlight the close link between these two gases across spatial and temporal scales in the ocean. These distinctions are crucial to guide effective communication of research within the scientific community and guide policymakers responsible for intervening on the drivers to secure desirable future ocean states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号