首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   18篇
  2023年   2篇
  2022年   3篇
  2021年   15篇
  2020年   3篇
  2019年   12篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   18篇
  2014年   13篇
  2013年   20篇
  2012年   21篇
  2011年   12篇
  2010年   9篇
  2009年   13篇
  2008年   16篇
  2007年   25篇
  2006年   18篇
  2005年   7篇
  2004年   14篇
  2003年   9篇
  2002年   4篇
  2000年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1990年   1篇
  1974年   2篇
  1967年   1篇
排序方式: 共有267条查询结果,搜索用时 109 毫秒
261.
Traction forces between adhesive cells play an important role in a number of collective cell processes. Intercellular contacts, in particular cadherin-based intercellular junctions, are the major means of transmitting force within tissues. We investigated the effect of cellular tension on the formation of cadherin-cadherin contacts by spreading cells on substrates with tunable stiffness coated with N-cadherin homophilic ligands. On the most rigid substrates, cells appear well-spread and present cadherin adhesions and cytoskeletal organization similar to those classically observed on cadherin-coated glass substrates. However, when cells are cultured on softer substrates, a change in morphology is observed: the cells are less spread, with a more disorganized actin network. A quantitative analysis of the cells adhering on the cadherin-coated surfaces shows that forces are correlated with the formation of cadherin adhesions. The stiffer the substrates, the larger are the average traction forces and the more developed are the cadherin adhesions. When cells are treated with blebbistatin to inhibit myosin II, the forces decrease and the cadherin adhesions disappear. Together, these findings are consistent with a mechanosensitive regulation of cadherin-mediated intercellular junctions through the cellular contractile machinery.  相似文献   
262.
Heteromorphs are ammonoids forming a conch with detached whorls (open coiling) or non-planispiral coiling. Such aberrant forms appeared convergently four times within this extinct group of cephalopods. Since Wiedmann's seminal paper in this journal, the palaeobiology of heteromorphs has advanced substantially. Combining direct evidence from their fossil record, indirect insights from phylogenetic bracketing, and physical as well as virtual models, we reach an improved understanding of heteromorph ammonoid palaeobiology. Their anatomy, buoyancy, locomotion, predators, diet, palaeoecology, and extinction are discussed. Based on phylogenetic bracketing with nautiloids and coleoids, heteromorphs like other ammonoids had 10 arms, a well-developed brain, lens eyes, a buccal mass with a radula and a smaller upper as well as a larger lower jaw, and ammonia in their soft tissue. Heteromorphs likely lacked arm suckers, hooks, tentacles, a hood, and an ink sac. All Cretaceous heteromorphs share an aptychus-type lower jaw with a lamellar calcitic covering. Differences in radular tooth morphology and size in heteromorphs suggest a microphagous diet. Stomach contents of heteromorphs comprise planktic crustaceans, gastropods, and crinoids, suggesting a zooplanktic diet. Forms with a U-shaped body chamber (ancylocone) are regarded as suspension feeders, whereas orthoconic forms additionally might have consumed benthic prey. Heteromorphs could achieve near-neutral buoyancy regardless of conch shape or ontogeny. Orthoconic heteromorphs likely had a vertical orientation, whereas ancylocone heteromorphs had a near-horizontal aperture pointing upwards. Heteromorphs with a U-shaped body chamber are more stable hydrodynamically than modern Nautilus and were unable substantially to modify their orientation by active locomotion, i.e. they had no or limited access to benthic prey at adulthood. Pathologies reported for heteromorphs were likely inflicted by crustaceans, fish, marine reptiles, and other cephalopods. Pathologies on Ptychoceras corroborates an external shell and rejects the endocochleate hypothesis. Devonian, Triassic, and Jurassic heteromorphs had a preference for deep-subtidal to offshore facies but are rare in shallow-subtidal, slope, and bathyal facies. Early Cretaceous heteromorphs preferred deep-subtidal to bathyal facies. Late Cretaceous heteromorphs are common in shallow-subtidal to offshore facies. Oxygen isotope data suggest rapid growth and a demersal habitat for adult Discoscaphites and Baculites. A benthic embryonic stage, planktic hatchlings, and a habitat change after one whorl is proposed for Hoploscaphites. Carbon isotope data indicate that some Baculites lived throughout their lives at cold seeps. Adaptation to a planktic life habit potentially drove selection towards smaller hatchlings, implying high fecundity and an ecological role of the hatchlings as micro- and mesoplankton. The Chicxulub impact at the Cretaceous/Paleogene (K/Pg) boundary 66 million years ago is the likely trigger for the extinction of ammonoids. Ammonoids likely persisted after this event for 40–500 thousand years and are exclusively represented by heteromorphs. The ammonoid extinction is linked to their small hatchling sizes, planktotrophic diets, and higher metabolic rates than in nautilids, which survived the K/Pg mass extinction event.  相似文献   
263.
The in silico prediction of bacterial surface exposed proteins is of growing interest for the rational development of vaccines and in the study of bacteria–host relationships, whether pathogenic or host beneficial. This interest is driven by the increase in the use of DNA sequencing as a major tool in the early characterization of pathogenic bacteria and, more recently, even of complex ecosystems at the host–environment interface in metagenomics approaches. Current protein localization protocols are not suited to this prediction task as they ignore the potential surface exposition of many membrane‐associated proteins. Therefore, we developed a new flow scheme, SurfG+, for the processing of protein sequence data with the particular aim of identification of potentially surface exposed (PSE) proteins from Gram‐positive bacteria, which was validated for Streptococcus pyogenes. The results of an exploratory case study on closely related lactobacilli of the acidophilus group suggest that the yogurt bacterium Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) dedicates a relatively important fraction of its coding capacity to secreted proteins, while the probiotic gastrointestinal (GI) tract bacteria L. johnsonii and L. gasseri appear to encode a larger variety of PSE proteins, that may play a role in the interaction with the host.  相似文献   
264.
The XRCC1–DNA ligase IIIα complex (XL) is critical for DNA single-strand break repair, a key target for PARP inhibitors in cancer cells deficient in homologous recombination. Here, we combined biophysical approaches to gain insights into the shape and conformational flexibility of the XL as well as XRCC1 and DNA ligase IIIα (LigIIIα) alone. Structurally-guided mutational analyses based on the crystal structure of the human BRCT–BRCT heterodimer identified the network of salt bridges that together with the N-terminal extension of the XRCC1 C-terminal BRCT domain constitute the XL molecular interface. Coupling size exclusion chromatography with small angle X-ray scattering and multiangle light scattering (SEC-SAXS–MALS), we determined that the XL is more compact than either XRCC1 or LigIIIα, both of which form transient homodimers and are highly disordered. The reduced disorder and flexibility allowed us to build models of XL particles visualized by negative stain electron microscopy that predict close spatial organization between the LigIIIα catalytic core and both BRCT domains of XRCC1. Together our results identify an atypical BRCT–BRCT interaction as the stable nucleating core of the XL that links the flexible nick sensing and catalytic domains of LigIIIα to other protein partners of the flexible XRCC1 scaffold.  相似文献   
265.
Active bronchial anaphylaxis in the rat   总被引:5,自引:0,他引:5  
  相似文献   
266.
267.
We present experiments on cell cultures and brain slices that demonstrate two-photon optogenetic pH sensing and pH-resolved brain imaging using a laser driver whose spectrum is carefully tailored to provide the maximum contrast of a ratiometric two-photon fluorescence readout from a high-brightness genetically encoded yellow-fluorescent-protein-based sensor, SypHer3s. Two spectrally isolated components of this laser field are set to induce two-photon-excited fluorescence (2PEF) by driving SypHer3s through one of two excitation pathways—via either the protonated or deprotonated states of its chromophore. With the spectrum of the laser field accurately adjusted for a maximum contrast of these two 2PEF signals, the ratio of their intensities is shown to provide a remarkably broad dynamic range for pH measurements, enabling high-contrast optogenetic deep-brain pH sensing and pH-resolved 2PEF imaging within a vast class of biological systems, ranging from cell cultures to the living brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号